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Abstract

This paper demonstrates that a misspecified model of information process-

ing interferes with long-run learning and allows inefficient choices to persist in

the face of contradictory public information. I consider an observational learn-

ing environment where agents observe a private signal about a hidden state,

and some agents observe the actions of their predecessors. Prior actions aggre-

gate multiple sources of correlated information about the state, and agents face

an inferential challenge to distinguish between new and redundant information.

When individuals significantly overestimate the amount of new information,

beliefs about the state become entrenched and incorrect learning may occur.

When individuals sufficiently overestimate the amount of redundant informa-

tion, beliefs are fragile and learning is incomplete. Learning is complete when

agents have an approximately correct model of inference, establishing that the

correct model is robust to perturbation. These results have important impli-

cations for timing, frequency and strength of policy interventions to facilitate

learning.
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1 Introduction

Observational learning plays an important role in the transmission of information,

opinions and behavior. People use bestseller lists to guide their purchases of books,

cars and computers. Co-workers’ decisions to join a retirement plan influence a

person’s decision to participate herself. Social learning also influences behavioral

choices, such as whether to smoke or exercise regularly, or ideological decisions, such

as which side of a moral or political issue to support. Given the gamut of situations

influenced by observational learning, it is important to understand how people learn

from the actions of their peers. This paper explores how a misspecified model of

information processing may interfere with asymptotic learning, and demonstrates

that such biases offer an explanation for how inefficient choices can persist in the

face of contradictory public information. The results have important implications

for policies aimed at counteracting inefficient social choices. In the presence of infor-

mation processing errors, the timing, frequency and strength of policy interventions

– such as public information campaigns – are an important determinate of long-run

efficiency.

Individuals face an inferential challenge when extracting information from the

actions of others. An action often aggregates multiple sources of correlated informa-

tion. Full rationality requires an agent to parse out the new information and discard

redundant information. This is a critical feature of standard observational learning

models in the tradition of Smith and Sorensen (2000). Agents understand exactly

how preceding agents incorporate the action history into their decision-making rule,

and are aware of the precise informational content of each action. However, what

happens if agents are unsure about how to draw inference from the actions of their

predecessors? What if they believe the actions of previous agents are more informa-

tive than is actually the case, or what if they attribute too many prior actions to

repeated information and are not sensitive enough to new information?

Motivated by this possibility, I allow agents to have a misspecified model of

the information possessed by other agents. This draws a distinction between the

perceived and actual informational content of actions. Consider an observational
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learning model where individuals have common-value preferences that depend on an

unknown state of the world. They act sequentially, observing a private signal before

choosing an action. A fraction p of individuals also observe the actions of previous

agents. These socially informed agents understand that prior actions reveal infor-

mation about private signals, but fail to accurately disentangle this new information

from the redundant information also contained in prior actions. Formally, informed

agents believe that any other individual is informed with probability p̂, where p̂ need

not coincide with p. When p̂ < p, an informed decision maker attributes too many

actions to the private signals of uninformed individuals. This leads him to overweigh

information from the public history, and allows public beliefs about the state to

become entrenched. On the other hand, when p̂ > p, an informed decision maker

underweights the new information contained in prior actions, rendering beliefs more

fragile to contrary information.

To understand how model misspecification affects long-run learning requires care-

ful analysis of the rate of information accumulation, and how this rate depends on

the way informed agents interpret prior actions. Theorem 1 specifies thresholds on

beliefs about the share of informed agents, p̂1 and p̂2, such that when p̂ < p̂1 both

correct and fully incorrect learning occur, and when p̂ > p̂2, beliefs about the state

perpetually fluctuate, rendering learning incomplete. Both cases admit the possi-

bility of inefficient learning: with positive probability, informed agents continue to

choose the inefficient action infinitely often, despite observing sufficient information

to learn the correct state. When p̂ falls between these two thresholds, p̂ ∈ (p̂1, p̂2),

learning is complete and informed agents will eventually choose the efficient action.

Efficient learning obtains in the correctly specified model, as demonstrated by the

fact that p ∈ (p̂1, p̂2).

Fully incorrect learning or incomplete learning is possible for some values of p̂ 6=
p because the public belief about the state is no longer a martingale. This also

complicates the analysis on a technical level, as it is no longer possible to use the

Martingale Convergence Theorem to establish belief convergence. The Law of the

Iterated Logarithm (LIL) and Law of Large Numbers (LLN) are jointly used to

establish belief convergence when p̂ < p̂2, and rule out belief convergence when
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p̂ > p̂2. This approach could also be utilized to examine other forms of model

misspecification.

Model misspecification has important policy implications. Consider a parent

deciding whether there is a link between vaccines and autism. The parent observes

public signals from the government and other public health agencies, along with

the vaccination decisions of peers. If all parents are rational, then a public health

campaign to inform parents that there is no link between vaccines and autism should

eventually overturn a herd on refusing vaccinations. However, if parents do not

accurately disentangle repeated information and attribute too many choices to new

information, then observing many other parents refusing to vaccinate their children

will lead to strong beliefs that this is the optimal choice, and make it less likely that

the public health campaign is effective.1 When this is the case, the best way to

quash a herd on refusing vaccinations is to release public information immediately

and frequently. This contrasts with the fully rational case, in which the timing of

public information release is irrelevant for long-run learning outcomes.

This paper relates to a rich literature. Banerjee (1992) and Bikhchandani, Hirsh-

leifer, and Welch (1992) first model observational learning in a sequential setting with

binary signals. Moscarini, Ottaviani, and Smith (1998) show that in the Bikhchan-

dani et al. (1992) framework, informational cascades are temporary when the state

of the world changes frequently enough. Smith and Sorensen (2000) study a social

learning framework with a general signal distribution and crazy types. An unbounded

signal space is sufficient to ensure complete learning, eliminating the possibility of

inefficient cascades. Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) examines social

learning in a network - the rational model of sequential learning with uninformed

agents is a special case of their model.

This paper is most closely related to concurrent work on social learning by Eyster

and Rabin (2010). They extend a sequential learning model with continuous actions

and signals to allow for “inferential naivety”: players realize that previous agents’

action choices reflect their signals, but fail to account for the fact that these actions

are also based on the actions of agents preceding these players. While continuous

1This example abstracts from the payoff interdependencies of vaccines.
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actions lead to full revelation of players’ signals in the absence of inferential naivety,

inferential naivety can confound learning by overweighing actions of the first few

agents. Although similar in nature, inferential naivety and model misspecification

differ in generality and interpretation. Inferential naivety considers the case in which

every repeated action is viewed as being independent with probability one, whereas

in the current setting, most decision makers are sophisticated and recognize that

actions contain some repeated information, but misperceive the exact proportion.

Additionally, all agents observe public information in Eyster and Rabin (2010). The

analogue of inferential naivety in my environment corresponds to p̂ = 0 and p = 1.

As such, both papers provide complementary explanations for the robustness of

inefficient learning. Eyster and Rabin (2010) also embed inferentially naive agents in

a model with rational agents. When every nth player in the sequence is inferentially

naive, rational agents achieve complete learning but inferentially naive agents do

not. Augmenting the misspecified and inferentially naive models with fully rational

agents who do not know precisely which previous agents are also rational, naive or

uninformed is an interesting avenue left open for future research.

Several other papers examine boundedly rational information processing in a

social learning framework. Guarino and Jehiel (2013) employ the concept of analogy

based expectation equilibrium (ABEE), in which agents best respond to the aggregate

distribution of action choices. Learning is complete in a continuous action model

- in an ABEE, the excess weight placed on initial signals increases linearly with

time, preventing these initial signals from permanently dominating subsequent new

information. This contrasts with Eyster and Rabin (2010), in which the excess weight

on initial signals doubles each period, allowing a few early signals to dominate all

future signals. As in the fully rational model, complete learning no longer obtains

in an ABEE when actions are discrete. Demarzo, Vayanos, and Zwiebel (2003)

introduce the notion of persuasion bias in a model of opinion formation in networks.

Decision makers embedded in a network graph treat correlated information from

others as being independent, leading to informational inefficiencies. Although this

paper studies a different environment than theirs, it provides a natural analogue for

considering persuasion bias in social learning. Earlier work by Eyster and Rabin
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(2005) on cursed equilibrium also examines information processing errors. A cursed

player doesn’t understand the correlation between a player’s type and his action

choice, and therefore fails to realize a player’s action choice reveals information about

his type.2

The recent initial response models, including level-k analysis and cognitive hier-

archy models, are similar in spirit to this paper.3 Consider level-k analysis in the

context of sequential learning. Anchoring level 0 types to randomize between the two

possible actions, level 1 types best respond by following their private signal - this

corresponds to uninformed types. Level 2 types believe all other agents follow their

private signal, and thus act as informed agents with beliefs p̂ = 0. Consequently,

the main difference between level-k analysis and the model misspecification in this

paper is the beliefs informed agents have about other agents’ types - in this paper,

informed agents can place positive weight on other agents using a level 2 decision

rule, whereas in a level k analysis, informed agents believe that all other agents use

a level 1 decision rule. In both settings, level 2 agents misperceive the share of other

agents who are level 2. The comparison to a cognitive hierarchy model is similar.

The organization of this paper proceeds as follows. Section 2 sets up the model

and solves the individual decision-problem. Section 3 characterizes the asymptotic

learning dynamics of a misspecified model of inference, while Section 4 discusses the

results and concludes. All proofs are in the Appendix.

2 The Common Framework

2.1 The Model

The basic set-up of this model mirrors a standard sequential learning environment.

States, Actions and Payoffs. There are two payoff-relevant states of the world,

ω ∈ {L, R} with common prior belief P (ω = L) = 1/2. Nature selects one of these

states at the beginning of the game. A countably infinite set of agents T = {1, 2, ...}

2Epstein, Noor, and Sandroni (2010) study non-Bayesian learning in a single-agent framework.
3Camerer, Ho, and Chong (2004); Costa-Gomes, Crawford, and Iriberri (2009).
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act sequentially and attempt to match the realized state of the world by making a

single decision between two actions, at ∈ {L,R}. They receive a payoff of 1 if their

action matches the realized state, and a payoff of 0 otherwise: u(at, ω) = 1at=ω.

Private Beliefs. Before choosing an action, each agent privately observes a signal

that is independent and identically distributed, conditional on the state. Following

Smith and Sorensen (2000), I work directly with the private belief, st ∈ (0, 1), which

is an agent’s belief that ω = L after observing the private signal but not the history.

Conditional on the state, the private belief stochastic process 〈st〉 is i.i.d, with con-

ditional c.d.f. F ω. Assume that no private signal perfectly reveals the state, which

implies that FL, FR are mutually absolutely continuous and have common support,

supp(F ). Let [b, b̄] ⊆ [0, 1] denote the convex hull of the support. Beliefs are bounded

if 0 < b < b̄ < 1, and are unbounded if [b, b̄] = [0, 1]. Finally, assume that some

signals are informative. This rules out dFL/dFH = 1 almost surely.

Agent Types. There are two types of agents, θt ∈ {I, U}. With probability

p ∈ (0, 1), an agent is a socially informed type I who observes the action choices of

her predecessors, ht = (a1, ..., at−1). She uses her private signal and this history to

guide her action choice. With probability 1 − p, an agent is a socially uninformed

type U who only observes his private signal. An alternative interpretation for this

uninformed type is a behavioral type who is not sophisticated enough to draw in-

ference from the history. This type’s decision is solely guided by the information

contained in his private signal.

Beliefs About Types. Each informed individual believes that each other individual

is informed with probability p̂, where p̂ need not coincide with p. An informed agent

believes that other agents also hold the same beliefs about whether previous agents

are informed or uninformed. Incorrect beliefs about p can persist because no agent

ever learns what the preceding agents actually observed or incorporated into their

decision-making processes.4

4Although it is admittedly restrictive to require that agents hold identical misperceptions about
others, and this misperception takes the form of a potentially incorrect point-mass belief about the
distribution of p, it is a good starting point to examine the possible implications of model misspec-
ification. Bohren (2012) also analyzes the model in which agents begin with a non-degenerate prior
distribution over p, and learn about p from the action history.
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Timing. At time t, agent t observes type θt and a private signal st; if θt = I, then

the agent also observes the public history ht. Next, she chooses action at.

2.2 The Individual Decision-Problem

A decision rule specifies an action for each history and signal realization pair. I look

for an outcome that has the nature of a Bayesian equilibrium, in the sense that agents

use Bayes rule to formulate beliefs about the state of the world, given their incorrect

belief about the type distribution, and seek to maximize payoffs. The decision rule

of each type is common knowledge, as is the fact that all informed agents compute

the same (possibly inaccurate) probability of any history ht.

It is standard to express the public belief of informed agents as a likelihood ratio,

lt =
P (L|ht; p̂)
P (R|ht; p̂)

,

which depends on the history and beliefs about the share of informed agents.5 An

agent who holds prior belief l and receives signal s updates to the private posterior

belief q(l, s) = l ×
(

s
1−s

)
. An uninformed agent has prior belief l1 = 1 and an

informed agent has prior belief lt. Guided by posterior belief q, the agent maximizes

her payoff by choosing a = L if q ≥ 1, and a = R otherwise. An agent’s decision can

be represented as a cut-off rule, s∗(l) = 1/(l+ 1), such that the agent chooses action

L when s ≥ s∗(l) and chooses action R otherwise. An informed agent in period t

uses cut-off s∗(lt), while uninformed agents use cut-off s∗(1) = 1/2.

An agent is in an information cascade when it is optimal for the agent to choose

the same action regardless of her private signal realization; therefore, this action

reveals no private information.

Definition 1 (Cascade Set). The cascade set is the set of beliefs Λ = {l|s <

s∗(l) ∀s ∈ supp(F )} ∪ {l|s ≥ s∗(l) ∀s ∈ supp(F )}.

An informed agent is in a cascade if lt ∈ Λ, and an uninformed agent is in a cascade

5I describe lt as the public belief, even though it is not the belief of uninformed agents.
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if l1 ∈ Λ. As usual, a cascade occurs when the prior belief outweighs the strongest

private belief.

Lemma 1. The cascade set is Λ = [0, (1 − b̄)/b̄] ∪ [(1− b) /b,∞] when signals are

bounded and Λ = {0,∞} when signals are unbounded.

By Lemma 1, uninformed agents are never in a cascade, since l1 = 1. When

informed agents are in a cascade, information continues to accumulate from the

actions of uninformed agents, and the formation of a cascade does not necessarily

imply belief convergence. Therefore, if the likelihood ratio enters the cascade set

in finite time, I would like to determine whether the likelihood ratio remains in

the cascade set. If a cascade doesn’t form in finite time, I would like to determine

whether the likelihood ratio can converge to a point in the cascade set. The following

definition introduces the notion of a limit cascade to encompass both of these ideas.6

Definition 2 (Limit Cascade). Suppose there exists a real, nonnegative random

variable l∞ such that lt → l∞ almost surely. Then an informed agent is almost

surely in a limit cascade if supp(l∞) ∈ Λ.

3 Learning Dynamics

3.1 Overview

This section proceeds as follows. After formally defining the stochastic process 〈lt〉
governing the evolution of the likelihood ratio, I characterize the set of stationary

points; these are candidate limit points for 〈lt〉. Next, I determine how the local

stability of these stationary points depends on p̂. This establishes the dynamics

of the likelihood ratio in the neighborhood of a stationary point. I use the law

of the iterated logarithm (LIL) to show that the likelihood ratio converges to each

stable stationary point with positive probability, from any initial value. Finally, I

rule out convergence to unstable stationary points and non-stationary points. The

6It would also be possible for beliefs to remain in the cascade set, but not converge. I rule this
out in Section 3.
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section concludes with a full characterization of asymptotic learning outcomes, which

depend on p̂.

3.2 The Likelihood Ratio

Let ψ(a|ω, l; p) denote the probability of action a, given likelihood ratio l, state ω

and share of informed agents p. Then

ψ(L|ω, l; p) = p(1− F ω(1/(l + 1))) + (1− p)(1− F ω(1/2)) (1)

and

ψ(R|ω, l; p) = pF ω(1/(l + 1)) + (1− p)F ω(1/2). (2)

This probability is a weighted average of the probability that an uninformed type

chooses a when using cut-off rule s∗(1) = 1/2 and the probability that an informed

type chooses a using cut-off rule s∗(l) = 1/(l + 1), given likelihood ratio l.

The likelihood ratio is updated based on the perceived probability of action a,

ψ(a|ω, l; p̂). If agents attribute a smaller share of actions to informed agents, p̂ <

p, then they place more weight on the action revealing private information and

overestimate the informativeness of prior actions. The opposite holds when agents

attribute too large a share to informed agents. Given a likelihood ratio lt and action

at, the likelihood ratio in the next period is lt+1 = φ(at, lt; p̂), where

φ(a, l; p̂) = l

(
ψ(a|L, l; p̂)
ψ(a|R, l; p̂)

)
. (3)

The joint stochastic process 〈at, lt〉∞t=1 is a discrete-time Markov process defined

on A × R+ with l1 = 1. Given state {at, lt}, the process transitions to state

{at+1, φ(at, lt; p̂)} with probability ψ(at+1|ω, φ(at, lt; p̂); p). The stochastic properties

of this process determine long-run learning dynamics.
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3.3 Local Stability of Limit Outcomes

At a stationary point, the likelihood ratio remains constant for any action that occurs

with positive probability.

Definition 3. A point ` is stationary if either (i) ψ(a|ω, `; p) = 0 or (ii) φ(a, `; p̂) =

` for a ∈ {L,R}.

The next Lemma characterizes the set of stationary points.

Lemma 2. The set of stationary points are {0,∞}.

A stationary point ` is stable if the likelihood ratio process 〈lt〉 converges to `

with positive probability when l1 is in the neighborhood of `.

Definition 4. Let ` ∈ [0,∞) be a stationary point of 〈lt〉. Then ` is stable if there

exists an open ball N0 around 0 such that l1 − ` ∈ N0 ⇒ P (lt → `) > 0. A point

` =∞ is stable if there exists an M such that l1 > M ⇒ P (lt →∞) > 0.

The challenge in establishing convergence results for 〈lt〉 stems from the depen-

dence of ψ and φ on the current value of the likelihood ratio. Corollary C.1 of Smith

and Sorensen (2000) derives a criterion for the local stability of a nonlinear stochas-

tic difference equation with state-dependent transitions. In the current setting, the

stability of a stationary point can be reframed in the context of the log likelihood

ratio. Suppose ω = R. Then, given likelihood ratio l, the probability of action a is

ψ(a|R, l; p). Define

γ(p̂, l) :=
∑

a∈{L,R}

ψ(a|R, l; p) log |φl(a, l; p̂)| (4)

where

φl(a, l; p̂) =
ψ(a|L, l; p̂)
ψ(a|R, l; p̂)

+ l
d

dl

(
ψ(a|L, l; p̂)
ψ(a|R, l; p̂)

)
(5)

is the derivative of φ with respect to l. From Corollary C.1 of Smith and Sorensen

(2000), if l is a stationary point and γ(p̂, l) < 0, then l is a stable stationary point.
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A straightforward extension establishes that if l is a stationary point and γ(p̂, l) > 0,

then l is not a stable stationary point.

For intuition, consider the case where ψ(a|ω, l; p̂) is constant with respect to l and

l is small.7 Then E[log lt+1|lt] ≈ log lt + γ(p̂, lt). If γ(p̂, 0) < 0 then E[log lt+1|lt] <
log lt for lt near zero and zero is a stable stationary point. If γ(p̂, 0) > 0 then

E[log lt+1|lt] > log lt for lt near zero and zero is not a stable stationary point.

I use this criterion to characterize the relationship between p̂ and the stability

of a stationary point. Suppose ω = R. If informed agents sufficiently overestimate

the share of uninformed agents, both zero and infinity are stable stationary points,

whereas if agents sufficiently underestimate the share of uninformed agents, then

there are no stable stationary points. When beliefs are close to correct, zero is the

only stable stationary point. Lemma 3 formally states this result.

Lemma 3. Suppose ω = R. There exist unique cutoffs p̂1 ∈ [0, p) and p̂2 ∈ (p, 1]

such that:

1. If p̂ < p̂1 then the set of stable stationary points are {0,∞}.

2. If p̂ ∈ (p̂1, p̂2) then {0} is the unique stable stationary point.

3. If p̂ > p̂2, then there are no stable stationary points.

Beliefs p̂ influence the information that accumulates from each action, but not

the probability of each action. When lt is near zero, beliefs favor state R. As p̂

increases, agents place more weight on the informativeness of contrary L actions and

less weight on the informativeness of supporting R actions. This makes the likelihood

ratio take a bigger jump away from zero when an L action is observed, and a smaller

jump towards zero when an R action is observed. At some cut-off p̂2, E[log lt+1|lt]
changes from decreasing to increasing near zero. Above p̂2, zero is no longer a stable

stationary point. Similar logic establishes the stability of lt near infinity for some

cut-off p̂1. When p̂ = p, the likelihood ratio is a martingale. Therefore, 〈log lt〉 is a

supermartingale and zero is a stable stationary point, establishing that p < p̂2. The

7This holds when informed agents are in a cascade.
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martingale convergence theorem precludes infinity from being a stable point when

p̂ = p; this establishes that p > p̂1.

3.4 Global Convergence to Limit Outcomes

The next Lemma establishes that if ` is a stable stationary point, then the likelihood

converges to ` with positive probability, from any initial value. The likelihood ratio

almost surely does not converge to non-stable stationary points or non-stationary

points.

Lemma 4. For any initial value l1, P (lt → `) > 0 iff ` is a stable stationary point

of 〈lt〉.

When agents have an inaccurate model of inference, p̂ 6= p, the likelihood ratio

is no longer a martingale and it is not possible to use standard martingale methods

to establish belief convergence. I use a two-pronged approach: the LIL establishes

global convergence to stable stationary points and the LLN rules out convergence to

non-stable stationary points.

Consider the case of bounded signals. The probability of each action is constant

when the likelihood ratio is in the cascade set. Suppose a cascade persists. By the

law of large numbers (LLN), the share of each action converges to its expected value,

which determines the limit of the likelihood ratio. If this limit lies inside the cascade

set, then by the LIL, there is a positive measure of sample paths that converge

to this limit without leaving the cascade set. On the other hand, if the limit lies

outside the cascade set, then the likelihood ratio will almost surely leave the cascade

set, a contradiction. Precisely the same criterion determines whether the candidate

limit lies inside or outside the cascade set and whether a stationary point is stable.

Therefore, whenever a stationary point is stable, the likelihood ratio converges to

this point with positive probability, from any initial value. The intuition is similar

for the case of unbounded signals. I bound the likelihood ratio with a stochastic

process that has state-independent transitions near the stable stationary point, and

use the LIL to determine the limiting behavior of this second process.
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3.5 Long Run Learning

This section presents the main result of the paper, a characterization of the learning

dynamics in a misspecified model of inference. Several possible long-run learning

outcomes may occur. Let complete learning denote the event where lt → 0, and in-

correct learning denote the event where lt →∞. Non-stationary incomplete learning

refers to the event where lt does not converge or diverge.8

Suppose there is at least one stable stationary point. Then there exists a random

variable l∞ such that lt → l∞. By Lemma 4, supp(l∞) is equal to the set of stable

stationary points. If 0 and ∞ are stable stationary points, then both complete and

incorrect learning arise with positive probability, and incomplete learning almost

surely does not occur. For complete learning to arise almost surely, 0 must be

the unique stable stationary point. When there are no stable stationary points,

then the likelihood ratio almost surely does not converge or diverge and learning

is incomplete. If signals are bounded, cascades break almost surely. Theorem 1

formally characterizes the relationship between learning and model misspecification,

using the cut-offs p̂1 and p̂2 derived in Lemma 3.

Theorem 1. Suppose ω = R. There exist unique cutoffs p̂1 and p̂2 such that

1. If p̂ < p̂1, then lt → l∞ almost surely, where l∞ is a random variable with

supp(l∞) = {0,∞}.

2. If p̂ ∈ (p̂1, p̂2), then lt → 0 almost surely.

3. If p̂ > p̂2, then lt almost surely does not converge or diverge. Additionally,

P (lt /∈ Λ i.o.) = 1.

When agents attribute too many actions to uninformed agents, they overestimate

the informativeness of actions supporting the more likely state, and underestimate

the informativeness of contrary actions, causing beliefs to quickly become entrenched.

Both complete and incorrect learning outcomes arise in this situation. When agents

8Stationary incomplete learning, or the event where lt → ` for some ` /∈ {0,∞}, is another type
of incomplete learning. This does not occur in the current model.
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attribute approximately the correct ratio of actions to uninformed agents, incorrect

learning is no longer possible. Finally, when informed agents attribute too few actions

to uninformed agents, they underestimate the informativeness of actions supporting

the more likely state, and overestimate the informativeness of contrary actions. Nei-

ther correct or incorrect learning is possible.

It is also necessary to rule out incomplete learning when p̂ < p̂2. Consider the

case of bounded signals. When a cascade persists with positive probability, the

probability that the likelihood ratio returns to any value outside the cascade set is

strictly less than one. Therefore, the probability that a value outside the cascade

set occurs infinitely often is zero – eventually a cascade forms and persists. When

a cascade persists and the likelihood ratio remains inside the cascade set, the LLN

guarantees belief convergence.

Action convergence obtains for informed agents, in that they eventually choose

the same action, if and only if the likelihood ratio converges or diverges. Action

convergence never obtains for uninformed agents, as their actions always depend on

their private information. Define a subsequence (atn) to represent the actions of

informed agents, where tn = inf{t > tn−1|θt = I} and t0 = 0. Then the following

Corollary is an immediate consequence of Theorem 1.

Corollary 1. Suppose ω = R.

1. If p̂ < p̂1, then atn → a∞ almost surely, where a∞ is a random variable with

supp(a∞) = {L,R}.

2. If p̂ ∈ (p̂1, p̂2), then atn → R almost surely.

3. If p̂ > p̂2, then atn almost surely does not converge.

The asymptotic properties of learning determine whether the action choices of in-

formed agents eventually converge to the optimal action. If complete learning obtains

almost surely, then learning will be efficient in that informed agents will choose the

optimal action all but finitely often. Otherwise, there is positive probability that

learning will be inefficient and informed agents will choose the suboptimal action

infinitely often.
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4 Discussion

A misspecified model of information processing impacts asymptotic learning, and

these results are robust to the addition of other information sources, such as an in-

finite stream of public signals or gurus (agents who know the state with probability

1). This insight has important policy implications. Suppose that a social planner

can release additional public information. In a correctly specified model, this will

affect the speed of learning, but will not impact asymptotic learning. However, in the

face of model misspecification, the timing, frequency and strength of public informa-

tion will play a key role in determining whether asymptotic learning obtains. When

p̂ < p̂1, immediate release of public information prevents beliefs from becoming en-

trenched on the incorrect state. A delayed public response requires stronger or more

frequent public signals to overturn an incorrect herd. Interventions are required on

a short-term basis: once a herd begins on the correct action, it is likely to persist on

its own (although another short-term intervention may be necessary in the future).

When p̂ > p̂2, the important policy dimension is the frequency or strength of public

information. As herds become more fragile, more frequent or precise public informa-

tion is required to maintain a correct herd. An intervention must be long-term; once

an intervention ceases, the herd will break.

Experimental evidence studying how people process correlated information sup-

ports this form of model misspecification. Enke and Zimmermann (2013) show that

subjects treat correlated information as independent when updating, and beliefs are

too sensitive to correlated information sources. In a social learning experiment, Go-

eree, Palfrey, Rogers, and McKelvey (2007) find that new information continues to

accumulate in cascades. Some agents still follow their private signal, despite the fact

that all agents observe the history. In rational models, this off-the-equilibrium-path

action would be ignored. However, it seems plausible that subsequent agents rec-

ognize these off-the-equilibrium-path actions reveal an agent’s private signal, even

if they are unsure of the exact prevalence of such actions. Koessler, Ziegelmeyer,

Bracht, and Winter (2008) examine the fragility of cascades in an experiment where

an expert receives a more precise signal than other participants. The unique Nash
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equilibrium is for the expert to follow her signal, and observation of a contrary signal

overturns a cascade. However, experts rarely overturn a cascade when equilibrium

prescribes that they do so. As the length of the cascade increases, experts become

even less likely to follow their signal: they break 65% of cascades when there are two

identical actions, but only 15% of cascades when there are five or more identical ac-

tions. Elicited beliefs evolve in a manner similar to the belief process that would arise

if all agents followed their signals, and each action conveyed private information. In

addition, off-the-equilibrium-path play frequently occurs, and these non-equilibrium

actions are informative. Kubler and Weizsacker (2004) also find evidence consistent

with a misspecified model of social learning. They conclude that subjects do learn

from their predecessors, but are uncertain about the share of previous agents who

also learned from their predecessors. Particularly, agents underestimate the share of

previous agents who herded and overestimate the amount of new information con-

tained in previous actions. This provides support for both the presence of uninformed

agents and a misspecified belief about their frequency.

This model leaves open several interesting questions. Individuals may differ in

their depth of reasoning and their ability to combine different information sources -

introducing heterogeneity into how agents process information would capture this.

Allowing for partial observability of histories would also be a natural extension, while

introducing payoff interdependencies would make the model applicable to election

and financial market settings.

5 Appendix: Proofs

Proof of Lemma 1: Suppose l ≥ (1− b) /b. The strongest signal an agent can

receive in favor of state R is b. This leads to posterior q(l, b̄) = l× b/ (1− b) ≥ 1 and

an informed agent finds it optimal to choose a = L. Therefore, for any signal s ≥ b,

an informed agent will choose action L. Similarly, if l ≤ (1− b̄)/b̄ an informed agent

will choose action R for any signal s ≤ b. Q.E.D.

Proof of Lemma 2: At a stationary point l, φ(a, l) = l for all a such that
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ψ(a|ω, l; p) > 0. As p < 1 and uninformed agents are never in a cascade, ψ(a|ω, l; p) >
0 for all a ∈ {L,R} and for all (ω, l) ∈ {L,R} × [0,∞). Also, these actions are in-

formative: (
ψ(a|L, l; p̂)
ψ(a|R, l; p̂)

)
6= 1.

Therefore, {0,∞} are the only two values that satisfy φ(a, l) = l for all a ∈ {L,R}.
Q.E.D.

The proof of Lemma 3 makes use of Corollary C.1 from Smith and Sorensen (2000),

which is reproduced below using the notation of this paper.

Lemma 5 (Condition for Stable Fixed Point). Given a finite set A, and Borel mea-

surable functions f : A×R+ → R+ and p : A×R+ → [0, 1] satisfying
∑

a∈A p(a|x) =

1. Let x1 ∈ R. Then the process 〈xt〉∞t=0 where xt+1 = f(at, xt) with probability

p(at|xt) for at ∈ A is a Markov process. Suppose f(a, ·) is continuously differentiable

and p(a|·) is continuous for all a ∈ A. Let x̃ be a fixed point of x. If∑
a∈A

p(a|x̃) log |fx(a, x̃)| < 0

then x̃ is a stable fixed point.

Proof: See Corollary C.1 in Smith and Sorensen (2000).

Proof of Lemma 3:

Claim 1. For a ∈ {L,R},

1. If l > 1, then d
dp̂

(
ψ(a|L,l;p̂)
ψ(a|R,l;p̂)

)
≤ 0.

2. If l < 1, then d
dp̂

(
ψ(a|L,l;p̂)
ψ(a|R,l;p̂)

)
≥ 0.

3. If l = 1, then d
dp̂

(
ψ(a|L,l;p̂)
ψ(a|R,l;p̂)

)
= 0.
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Suppose a = R. Then:

d

dp̂

(
ψ(R|L, l; p̂)
ψ(R|R, l; p̂)

)
=
FL(1/(l + 1))FR(1/2)− FL(1/2)FR(1/(l + 1))

[p̂FR(1/(l + 1)) + (1− p̂)FR(1/2)]2

Given FL/FR ≤ dFL/dFR ≤ (1 − FL)/(1 − FR), a standard inequality for the

monotone likelihood ratio property (Smith and Sorensen 2013), dFL/dFR ≥ 0. If

l > 1, then FL(1/(l+1))
FR(1/(l+1))

≤ FL(1/2)
FR(1/2)

which establishes (1) for a = R. The proof of the

remaining cases and a = L is analogous.

Claim 2. There exists a p̂2 ∈ (p, 1) such that ` = 0 is a stable stationary point for

p̂ < p̂2 and is not a stable stationary point for p̂ > p̂2.

From Lemma 5, 0 is a stable limit point iff γ(p̂, 0) < 0, where γ(p̂, l) is defined in

Equation 4. At l = 0,

γ(p̂, 0) =
∑

a∈{L,R}

ψ(a|R, 0; p) log

(
ψ(a|L, 0; p̂)

ψ(a|R, 0; p̂)

)

= (1− p)(1− FR(1/2)) log

(
1− FL(1/2)

1− FR(1/2)

)
+
(
p+ (1− p)FR(1/2)

)
log

(
p̂+ (1− p̂)FL(1/2)

p̂+ (1− p̂)FR(1/2)

)
If p̂ = 1, then

γ(1, 0) = (1− p)(1− FR(1/2)) log

(
1− FL(1/2)

1− FR(1/2)

)
> 0
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since 1−FL(1/2)
1−FR(1/2)

> 1, given FL(1/2) < FR(1/2). If p̂ = p, then

γ(p, 0) =
∑

a∈{L,R}

ψ(a|R, 0; p) log

(
ψ(a|L, 0; p)

ψ(a|R, 0; p)

)

< log

 ∑
a∈{L,R}

ψ(a|R, 0; p)

(
ψ(a|L, 0; p)

ψ(a|R, 0; p)

) = log

 ∑
a∈{L,R}

ψ(a|L, 0; p)

 = 0

where the second line follows from the weighted arithmetic mean-geometric mean

inequality. Finally,

dγ(p̂, 0)

dp̂
=
(
p+ (1− p)FR(1/2)

)(ψ(R|R, 0; p̂)

ψ(R|L, 0; p̂)

)
d

dp̂

(
ψ(R|L, l; p̂)
ψ(R|R, l; p̂)

)
≥ 0

where the inequality follows from Claim 1. Therefore, γ(p̂, 0) is weakly increasing in

p̂. By continuity, there exists a unique p̂2 ∈ (p, 1) such that γ(p̂2, 0) = 0. For p̂ < p̂2,

γ(p̂, 0) < 0 and 0 is a stable limit point, while for p̂ > p̂2, γ(p̂, 0) > 0 and 0 is not a

stable limit point.

Claim 3. If

p > p∗ := 1−
log
(

1−FL(1/2)
1−FR(1/2)

)
FR(1/2)

[
log
(
FR(1/2)
FL(1/2)

)
+ log

(
1−FL(1/2)
1−FR(1/2)

)]
then there exists a p̂1 ∈ (0, p) such that ` =∞ is a stable stationary point for p̂ < p̂1

and is not a stable stationary point for p̂ > p̂1. If p < p∗, then ` =∞ is not a stable

stationary point for all p̂.

Consider the Markov process 〈(at, xt)〉 with transitions
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Ψ(L|ω, x; p) = p

(
1− F ω

(
x

1 + x

))
+ (1− p)(1− F ω(1/2))

Ψ(R|ω, x; p) = pF ω

(
x

1 + x

)
+ (1− p)F ω(1/2)

Φ(a, x; p̂) = x

(
Ψ(a|R, x; p̂)

Ψ(a|L, x; p̂)

)
Note xt = 1/lt. The set of stationary points of 〈xt〉 are {0,∞}. Suppose ω = R and

define

Γ(p̂, x) :=
∑

a∈{L,R}

Ψ(a|R, x; p) log |Φx(a, x; p̂)|.

Then x∗ = 0 is a stable stationary point iff Γ(p̂, 0) < 0. Note Γ(p̂, 0) = −γ(p̂,∞).

At x = 0,

Γ(p̂, 0) =
((
p+ (1− p)(1− FR(1/2)

))
log

(
p̂+ (1− p̂)(1− FR(1/2))

p̂+ (1− p̂)(1− FL(1/2))

)
+(1− p)FR(1/2) log

(
FR(1/2)

FL(1/2)

)
.

If p̂ = 0, then

Γ(0, 0) =
(
1− (1− p)FR(1/2)

)
log

(
1− FR(1/2)

1− FL(1/2)

)
+(1−p)FR(1/2) log

(
FR(1/2)

FL(1/2)

)
which is less than zero when

p > 1−
log
(

1−FL(1/2)
1−FR(1/2)

)
FR(1/2)

[
log
(
FR(1/2)
FL(1/2)

)
+ log

(
1−FL(1/2)
1−FR(1/2)

)] := p∗.

Suppose Γ(p, 0) < 0. Then xt → 0 with positive probability in the neighborhood of
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0, and therefore lt →∞ with positive probability. This is a contradiction, since lt is

a martingale when p̂ = p. Therefore, Γ(p, 0) > 0. Finally,

dΓ(p̂, 0)

dp̂
= Ψ(L|R, 0; p)

Ψ(L|L, 0; p̂)

Ψ(L|R, 0; p̂)

d

dp̂

(
Ψ(L|R, 0; p̂)

Ψ(L|L, 0; p̂)

)
≥ 0

where the inequality follows from Claim 1 and Ψ(a|ω, 0; p̂) = ψ(a|ω,∞; p̂). Therefore,

Γ(p̂, 0) is weakly increasing in p̂.

When p > p∗, by continuity there exists a unique p̂1 ∈ (0, p) such that Γ(p̂1, 0) =

0. For p̂ < p̂1, Γ(p̂, 0) < 0 and 0 is a stable limit point of 〈xt〉, while for p̂ > p̂1,

Γ(p̂, 0) > 0 and 0 is not a stable limit point. When p < p∗, then Γ(p̂, 0) > 0 for all p̂

and 0 is not a stable limit point of 〈xt〉. Note that ∞ is a stable limit point of 〈lt〉
when 0 is a stable limit point of 〈xt〉

Claim 4. p̂1 < p̂2.

This follows immediately from the fact that p̂1 < p and p̂2 > p.

Proof of Lemma 4:

Claim 5. If ` is not a stationary point of 〈lt〉, then P (lt → `) = 0.

Theorem B.1 in Smith and Sorensen (2000) establishes that a martingale cannot

converge to a non-stationary point; the same result applies to the Markov process

〈lt〉. Therefore, if P (lt → `) > 0, then ` ∈ {0,∞}.

For the remainder of the proof, suppose ω = R. Define g(a, l) = ψ(a|L,l;p̂)
ψ(a|R,l;p̂) and

ρ(a, l) = ψ(a|R, l; p) given ψ(·|·) from Equation 1. Using this notation, lt+1 = lt ×
g(at, lt) and γ(p̂, 0) = ρ(R, 0) log g(R, 0) + ρ(L, 0) log g(L, 0), where γ(·) is defined in

Equation 4.

Case I: Bounded Private Beliefs

Let (α1, α2, ...) be an i.i.d. sequence of random variables with

αt =

L if (θt = U and st ≥ 1/2)

R if (θt = I) or (θt = U and st < 1/2).
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Then αt corresponds to the action that is chosen if informed agents are in an R-

cascade in period t, with P (αt = a) = ρ(a, 0). Note E[log g(αt, 0)] = γ(p̂, 0) and let

σ2 := V ar (log g(αt, 0)). Define a sequence of random variables (X1, X2, ...) where

Xt :=
log g(αt, 0)− γ(p̂, 0)

σ
.

Then (X1, X2, ...) are i.i.d random variables with mean zero and variance one.

Fix τ ≥ 1. By the Law of the Iterated Logarithm (Hartman and Wintner 1941),

lim sup
t→∞

∑t
i=τ Xi√

2(t− τ + 1) log log(t− τ + 1)
= 1 a.s.

Thus, for all ε > 0,

P

[
1

t− τ + 1

t∑
i=τ

log g(αi, 0) ≥ γ(p̂, 0) + βt−τ+1 i.o.

]
= 0

where βt := (1 + ε)σ
√

2 log log t
t

.

Claim 6. Let

ζτ :=

{
{ατ , ατ+1, ...} |

1

t− τ

t−1∑
i=τ

log g(αi, 0) < γ(p̂, 0) + βt−τ for all t ≥ τ

}

be the set of sample paths such that 1
t−τ
∑t−1

i=τ log g(αi, 0) never exceeds γ(p̂, 0)+βt−τ .

Then P (ζτ ) ≥ 1/2.

The complement of ζτ , denoted ζcτ , represents the set of sample paths that exceed

γ(p̂, 0) + βt−τ at least once. For each α = {ατ , ατ+1, ...} ∈ ζcτ , form a corresponding

sample path α′ with α′t 6= αt for each t such that 1
t−τ
∑t−1

i=τ log g(αi, 0) > γ(p̂, 0)+βt−τ .

Then each α ∈ ζcτ has a unique corresponding sample path α′ ∈ ζτ . Therefore, P (ζτ )

≥ P (ζcτ ), which implies P (ζτ ) ≥ 1/2. This establishes that the set of sample paths

such that 1
t−τ
∑t−1

i=τ log g(αi, 0) never crosses its upper bound has positive measure.
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Claim 7. If ` ∈ {0,∞} is a stable point, then P (lt → `) > 0 from any initial value

l1.

Let τ1 be the smallest t such that an R-cascade forms,

τ1 = inf
{
t ≥ 1|lt ∈

[
0,
(
1− b

)
/b
]}
.

Fixing l1, let η < ∞ be the number of consecutive R actions required to start a

cascade. Then the probability that an R-cascade forms in η periods is P (τ1 = η) >

((1 − p)FR(1/2))η > 0, where the middle term is the probability of η uninformed

agents choosing R.

If
∑j

i=τ1
log g(αi, 0) < 0 for all j ∈ {τ1, ..., t−1}, then the cascade has not broken

in period t and

log lt = log lτ1 +
t−1∑
i=τ1

log g(αi, 0).

From Claim 6, we know that

P

(
t−1∑
i=τ1

log g(αi, 0) < (t− τ1)(γ(p̂, 0) + βt−τ1) ∀t > τ1

)
≥ 1/2.

Suppose ` = 0 is a stable point, γ(p̂, 0) < 0. Let τ2 = inf {t > τ1|γ(p̂, 0) + βt−τ1 < 0}
be the smallest value of t > τ1 such that γ(p̂, 0) + βt−τ1 is negative. This is well-

defined since βt → 0. Between periods τ1 and τ2, the probability that the likelihood

ratio remains in the R-cascade set is

P
(
lt ∈

[
0,
(
1− b

)
/b
]
∀t ∈ {τ1, ..., τ2 − 1}

)
> P

(
t−1∑
i=τ1

log g(αi, 0) < 0 ∀t ∈ {τ1, ..., τ2 − 1}

)
> ρ(R, 0)τ2−τ1 > 0

where ρ(R, 0)τ2−τ1 is the probability of all R actions during this interval. The prob-
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ability that an R-cascade doesn’t break at any t > τ1 is

P
(
lt ∈

[
0,
(
1− b

)
/b
]
∀t > τ1

)
≥ P

(
t−1∑
i=τ1

log g(αi, 0) < 0 ∀t > τ1

)

≥ P

(
t−1∑
i=τ1

log g(αi, 0) < min{0, (t− τ1)(γ(p̂, 0) + βt−τ1)} ∀t ≥ τ1

)

≥ 1

2
ρ(R, 0)τ2−τ1 > 0.

where the final line follows from the probability of all R actions between periods

τ1 and τ2 and the probability of not exceeding the LIL bound after τ2 (Claim 6).

Therefore, the probability that an R-cascade forms and never breaks is at least

1

2
((1− p)FR(1/2))ηρ(R, 0)τ2−η > 0.

Let τ3 = inf
{
t ≥ 1|ls ∈

[
0,
(
1− b

)
/b
]
∀s ≥ t

}
be the period in which an R-

cascade forms and never breaks. We just established that P (τ3 < ∞) > 0. Also,

when τ3 < ∞, lt = lτ3
∏t−1

i=τ3
g(αi, 0) → 0. Therefore, P (lt → 0) > 0. The proof for

` =∞ is analogous.

Claim 8. If ` ∈ {0,∞} is not a stable point, then P (lt → `) = 0 from any initial

value l1.

1. Suppose ` = 0 is not stable and there exists a τ1 <∞ such that lτ1 ∈
[
0,
(
1− b

)
/b
]
.

Let τ2 = inf
{
t > τ1|lτ2 /∈

[
0,
(
1− b

)
/b
]}

. Then P (τ2 <∞) = 1.

2. Suppose ` = ∞ is not stable and there exists a τ1 < ∞ such that lτ1 ∈
[(1− b) /b,∞]. Let τ2 = inf {t > τ1|lτ2 /∈ [(1− b) /b,∞]}. Then P (τ2 < ∞) =

1.

Suppose ` = 0 is not a stable point, so γ(p̂, 0) > 0. Let τ3 be the period in which

an R-cascade forms and never breaks, τ3 = inf
{
t ≥ 1|ls ∈

[
0,
(
1− b

)
/b
]
∀s ≥ t

}
.
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Suppose P (τ3 <∞) > 0. Then, given τ3 <∞,

log lt = log lτ3 +
t−1∑
i=τ3

log g(αi, 0) ≤ log
(
1− b

)
/b

for all t > τ3. Then it must be the case that

lim
t→∞

1

t− τ3

t−1∑
i=τ3

log g(αi, 0) ≤ 0.

But by the Law of Large Numbers,

lim
t→∞

1

t− τ3

t−1∑
i=τ3

log g(αi, 0) = γ(p̂, 0) > 0 a.s.

a contradiction. Therefore the cascade must break almost surely, and P (lt → 0) = 0.

The proof for ` =∞ is analogous.

Case II: Unbounded Private Beliefs

Claim 9. If ` ∈ {0,∞} is a stable point, then P (limt→∞ lt = `) > 0 from any initial

value l1.

Let 0 be a stable stationary point, γ(p̂, 0) < 0. I proceed in three steps: (i)

construct a stochastic process 〈λt〉∞t=1 with state-independent transitions near 0 and 0

as a stable stationary point, (ii) apply the techniques from Claims 6-7 (which require

state-independent transitions near the stable point) to show that P (λt → 0) > 0

from any initial value, and (iii) show that P (lt ≤ λt ∀t|λt → 0) > 0, and therefore,

P (lt → 0) > 0.

By continuity of ψ, it is possible to find an M ∈ (0, 1) such that

ρ(L,M) log g(L, x) + ρ(R,M) log g(R, y) < 0.
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for all x, y ∈ [0,M ]. Choose `L, `R ∈ [0,M ] such that

`L = arg max
l∈[0,M ]

g(L, l)

and

`R = arg max
l∈[0,M ]

g(R, l).

Let (ν1, ν2, ...) be an i.i.d. sequence of random variables with

νt =

L if (θt = I and st ≥ s∗(M)) or (θt = U and st ≥ 1/2)

R if (θt = I and st < s∗(M)) or (θt = U and st < 1/2).

Then νt corresponds to the action that is chosen if lt = M , with P (νt = a) = ρ(a,M).

Define a stochastic process 〈λt〉∞t=1 where λ1 = l1 and

λt+1 =


λt × g(L, `L) if νt = L and λt ≤M

λt × g(R, `R) if νt = R and λt ≤M

λt × g(at, λt) if λt > M

where at is the action chosen in period t. By Lemma 5, 0 is a stable fixed point of

〈λt〉∞t=1 if

ρ(L,M) log g(L, `L) + ρ(R,M) log g(R, `R) < 0.

Given `R, `L ∈ [0,M ] and the definition of M , this condition holds.

Let τ1 = inf{t ≥ 1|λt < M} be the first time that λt < M and τ2 = inf{t >
τ1|λt > M} be the first time after τ1 that λt > M . Similar arguments to the case of

bounded private beliefs (replacing the R-cascade set with [0,M ] and αt with νt) can

be used to establish that P (τ2 =∞) > 0 and P (λt → 0) > 0.

Note g(R, x) ≤ g(R, `R), g(L, x) ≤ g(L, `L) and g(R, x) < g(L, `L) for x ∈ [0,M ]

and it is never the case that (at, νt) = (L,R) when t < τ2. Therefore, lt ≤ λt when

t < τ2. If τ2 =∞, then lt → 0. Therefore, P (lt → 0) > 0.

Claim 10. If ` ∈ {0,∞} is not a stable point, then P (lt → `) = 0 from any initial
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value l1.

A similar argument can be used to bound lt from below and establish that

P (lt → `) = 0 when γ(p̂, 0) > 0. Q.E.D.

Proof of Theorem 1:

Claim 11. If p̂ < p̂1, then lt → l∞ almost surely, where l∞ is a random variable

with supp(l∞) = {0,∞}.

Suppose p̂ < p̂1. Lemma 3 established that the set of stable stationary points

is {0,∞}, and Lemma 4 established that P (lt → `) > 0 iff ` is a stable stationary

point. Thus, we need to rule out non-stationary incomplete learning to show that

there exists an l∞ with supp(l∞) = {0,∞} such that lt → l∞ almost surely.

Suppose private beliefs are bounded. Let τ1 = inf{t ≥ 1|lt ∈ Λ} be the first time

that the likelihood ratio enters the cascade set and let τ2 = inf{t > τ1|lt /∈ Λ} be

the first time that the likelihood ratio leaves the cascade set . For any l1, P (τ1 <

∞) = 1 and by Lemma 4, P (τ2 < ∞) < 1. Therefore, P (lt /∈ Λ i.o.) = 0. Let

τ3 = inf{t ≥ 1|ls ∈ Λ ∀s ≥ t}. Then P (τ3 <∞) = 1 and the likelihood ratio almost

surely eventually remains in the cascade set. Lemma 4 established belief convergence

on any sample path that remains in the cascade set. Thus, there exists a random

variable l∞ with supp(l∞) = {0,∞} such that lt → l∞ almost surely.

Similar logic establishes that when private beliefs are unbounded, P (lt ∈ (`1, `2)

i.o.) = 0 for any (`1, `2) ⊂ (0, 1), and therefore, there exists a τ such that P (lt ∈
[0, `1] ∪ [`2, 1] ∀t > τ) = 1. Choosing `1 small enough and `2 large enough can be

used to establish convergence.

Claim 12. If p̂ ∈ (p̂1, p̂2), then lt → 0 almost surely.

Similar logic to Claim 11, substituting [0, (1− b̄)/b̄] for Λ in the case of bounded

private beliefs and setting `2 = 1 in the case of unbounded private beliefs establishes

the claim.

Claim 13. If p̂ > p̂2, then lt almost surely does not converge or diverge.
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When p̂ > p̂2, the likelihood ratio neither converges to 0 nor diverges to ∞.

These are the only two candidate limit points; therefore, the likelihood ratio does

not converge and learning is incomplete.

P (lt /∈ Λ i.o.) = 1 follows immediately from Claim 8 for bounded private beliefs,

and from Claim 13 for unbounded private beliefs. Q.E.D.
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