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Abstract

When a decision maker is a member of multiple social groups, her actions may

cause information to �spill over� from one group to another. We study the nature

of these spillovers in an observational learning game where two groups interact via a

common player, and where conventions emerge when players follow the decisions of the

members of their own groups rather than their own private information. We show that:

(i) if a convention develops in one group but not the other group, then the convention

spills over via the common player; (ii) when conventions disagree, then the common

player�s decision breaks the convention in one group; and (iii) when no conventions

have developed, then the common player�s decision triggers conventions on the same

action in both groups. We also �nd that information spillovers may reduce welfare.
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1 Introduction

Decision makers are typically members of multiple social groups. Consider, for example, an

economics professor. She belongs to an economics department and may belong to a group

of faculty who regularly get together to play poker. As a member of these groups, she is a

conduit through which information �ows not only within a group but also from one group

to another. She may learn, for example, from fellow poker players about university health

plans, and she may transmit this information via her choice of plan to her colleagues in

the economics department (and vice versa). Similarly, information �ows both within and

between the divisions of a �rm through its senior managers. Information is also conveyed

within and between di¤erent groups of friends on social networking sites, like Facebook, via

friends, friends of friends, and so on, who are members of multiple groups.

The present paper introduces �interacting cascades,� a new class of social networks in

which information �ows between groups. In an interacting cascade, there are several di¤erent

groups of decision makers (e.g., economists and poker players), but some decision makers

belong to more than one group. It is through these decision makers that information �ows

between groups, and behavior in one group in�uences behavior in another.

We study simple interacting cascades in which two groups of players share a common

member. Each player chooses whether to adopt or reject a behavior, where it is optimal to

adopt if the true (but unknown) state is high and reject if the state is low. Prior to making

her decision, each regular player observes an informative private signal as well as the prior

decisions of the members of her own group. The common player observes her own private

signal and the prior decisions of the members of both groups. Since players moving after the

common player observe her decision, such players indirectly learn about the decisions and

information of the players in the other group. In this way, information spills over from each

group to the other.

For players moving prior to the common player, an interacting cascade is identical in

structure to Bikhchandani, Hirshleifer, and Welch (1992)�s model of an information cascade

and equilibrium has the same structure: A player follows her own signal, choosing adopt if

her signal is high and reject if her signal is low, so long as the di¤erence in the number of

adopt and reject decisions by prior players does not exceed one. If, however, the number of

adopt decisions exceeds the number of reject decisions by two or more, then a player ignores

2



her own signal and also chooses adopt, as the information revealed by the decisions of prior

players outweighs the information contained in her own private signal. The player is said to

be in a �cascade�on adopt. Likewise, a cascade on reject results when the number of reject

decisions exceeds the number of adopt decisions by two or more.

Our focus is on the decisions of the common player and the players who move after her.

We show that if an information cascade forms in only one group prior to the move of the

common player, then the cascade spills over via the common player to the other group. If,

however, the groups are in cascades on di¤erent actions, then the common player breaks the

cascade in one group. In this case, the common player follows her own signal, the cascade

that agrees with the common player�s decision continues, and the cascade that disagrees

with the common player�s decision ends. Finally, if neither group is in a cascade, then the

common player follows her own signal, and the common player�s decision triggers cascades

(on her decision) in both groups.

Perhaps surprisingly, information spillovers via a common player need not enhance wel-

fare. Intuitively, this occurs because the common player suppresses learning when her deci-

sion triggers cascades in both groups. We provide, however, su¢ cient conditions for infor-

mation spillovers to be welfare enhancing. In particular, the payo¤ of every player is weakly

higher in an interacting cascade if either four or more players in each group move prior to

the common player or the players�private signals are su¢ ciently informative.

This �nding indicates that the common player�s position has implications for welfare �

if her turn to move comes too early, then she shuts down learning prematurely, while if it

comes too late, then fewer players bene�t from her aggregation of information. The optimal

position of the common player balances these two e¤ects. We conclude with an analysis of

this optimal position. We show that if the signal precision is high (and thus the bene�t

from extending information aggregation is small), then total surplus is maximized when the

common player�s turn to move comes early, while if it is low then surplus is maximized when

the common player moves late.

Our results shed light on the how the structure of social networks a¤ects the adoption

of products and behaviors. Lindstrom and Muñoz-Franco�s (2005) study of contraceptive

use in Guatemala provides an example of our result that if a cascade emerges in one group

but not the other, then interaction results in the cascade spilling. The authors �nd that

urban migrants (the common players) transmit the urban convention of contraceptive use
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back to their (rural) villages, where contraceptive use was previously sporadic. Closer to

home, Javorcik�s (2004) study of spillovers from foreign direct investment in Lithuania also

provides an example of this result. He �nds that ventures by foreign �rms from developed

countries (the common players) are able to transmit productivity-enhancing practices to

their up-stream Lithuanian suppliers and those suppliers�competitors.

The balance of this section discusses the related literature. Section 2 introduces our model

of interacting cascades. Section 3 provides an illustrative example. Section 4 states our

results and Section 5 concludes. Appendix A contains the proof of existence and uniqueness

of equilibrium. The main results are established in Appendix B, while computational details

are relegated to the online Appendix C.

Related Literature

Our work is partially an extension of the observational learning literature. As its name

suggests, this literature is concerned with how players learn from the behavior of others. A

typical model assumes that players move sequentially and face payo¤s that depend on the

unknown state. When a player moves, she makes a one-time decision after observing some

common signal, which is often the complete history of prior decisions, and a private signal.

She uses this information to make inferences about the state and pick a payo¤-maximizing

action.

In their seminal paper, Bikhchandani et al. (1992) found that a cascade eventually forms

and, with positive probability, it forms on the action that is incorrect for the realized state.

Subsequently, much of the literature has concerned itself with characterizing when players

asymptotically learn the true state under di¤erent signal structures (if they ever do). For

instance, Cao et al. (2011) allow (heterogeneous) players to observe the decisions and payo¤s

of their predecessors and show that players may never learn the true state, Celen and Kariv

(2001) only allow players to observe their immediate predecessor�s action and show that

beliefs and decisions cycle, and Smith and Sorensen (2000) show that learning obtains when

private signals are arbitrarily informative. See Bikhchandani et al. (1998) for an overview

of early work. More recent include Acemoglu et al. (2011), Banerjee and Fudenberg (2004),

Callander and Horner (2009), Guarino et al. (2011), Guarino and Jehiel (2009), Larson

(2008), and Smith and Sorensen (2008).1 Our work di¤ers in that our focus is on group

1Experimental and empirical studies have found support for cascades (in smaller groups) and observational
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interaction, not asymptotic learning.

Our work is also related to Bala and Goyal (1998), Gale and Kariv (2003), and Mueller-

Frank (2013) who examine learning in social networks in which players move repeatedly. In

these models, players face payo¤s that depend on the unknown state and pick an action to

maximize their instantaneous payo¤ after observing the history of their neighborhoods (and

an initial private signal). These papers (i) show that players�decisions, regardless of their

positions in the network, asymptotically converge to the optimal action so long as networks

are connected, and (ii) they develop conditions under which learning does not obtain. While

these models allow for a greater variety of social networks than ours, they don�t focus on

how the conventions of di¤erent groups interact.

In related papers, Acemoglu et al. (2014) and Golub and Jackson (2010) examine games

where players �rst get private signals and then make one-time decisions after sharing their

private information over their (endogenously chosen) social networks. Both papers develop

su¢ cient conditions for asymptotic learning: Acemoglu et al. (2014) shows that players

must be close to �information hubs,�while Golub and Jackson (2010) show that the weight

players attach to each person�s information must be limited.

More broadly, our work is related to a literature that studies factors that drive the

emergence of conventions. For instance, Bernheim (1994) points out that conventions may

be explained by a desire for conformity. In his static model, players get utility from social

status and consumption. In equilibrium, non-conformity in consumption is punished by a

loss of status, so players have an equilibrium desire to conform. Bernheim characterizes when

this desire is strong enough to cause a convention to emerge. Other authors have also used

a desire for conformity to explain the emergence of conventions �e.g., Akerlof (1997) and

Becker (1991).

Jackson and Yariv (2007) point out that best-reply dynamics of network games can

also drive the emergence and propagation of conventions. Young (1996) and the papers

therein take a related view. They examine evolutionary coordination games where agents

have limited memories and they show that conventions may emerge as a way of solving

coordination problems. They characterize the nature of these conventions and examine how

learning in general. See Anderson and Holt (1997), Drehmann et al. (2005), Cai et al. (2009), and Weizsacker

(2010) among others. Goeree et al. (2007) experimentally demonstrate the fragility of cascades in larger

groups (e.g., 20+ participants).
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they migrate on networks. Our �ndings are complementary as we approach the issue of

interaction from di¤erent economic and technical perspectives. In particular, we focus on

the e¤ects of information �ows, whereas Young focuses on coordination.

Our interaction results are related to Cipriani and Guarino (2008), who examine asset

price cascades with two correlated assets and show that a cascade in one market may spillover

into the other market. We di¤er in that our focus is on social networks rather than �nancial

markets. In particular, our players only observe the history of decisions in their own groups

as opposed to the history of prices/decisions in both markets. This leads to di¤erences in

our interaction results �e.g., Cipriani and Guarino show that learning stops forever once

both markets are in cascades, while we �nd that if both groups are in di¤erent cascades,

then interaction results in learning resuming.

2 The Model

This section describes the environment, the equilibrium concept, and establishes that an

equilibrium exists and is essentially unique.

Basic Cascades

In a (basic) cascade, N identical players move sequentially in a commonly known and

exogenous order. Let i denote the i-th player to move, where i 2 f1; 2; : : : ; Ng. When it is
her move, a player decides whether to adopt (a) or reject (r) a behavior. A player�s payo¤

depends only on her own decision and the true, but unknown state, which may be either

high (H) and low (L). The payo¤ of player i when she takes decision di 2 fa; rg in state
s 2 fH;Lg is

u(di; s) =

8>><>>:
1 if di = a and s = H

�1 if di = a and s = L
0 if di = r:

Each state is equally likely, i.e., P (H) = P (L) = 1=2. Each player i observes the decisions of
the prior players �di�1 := (d1; : : : ; di�1) and an informative private signal xi 2 fH;Lg, prior
to making her own decision. The probability of signal x, conditional on the true state being

s, is

P (xjs) =

8<: p if x = s

1� p if x 6= s,

6



where p 2 (1=2; 1). Given s, the signals xi and xj are independent when i 6= j. We write �xi
for (x1; : : : ; xi), where �x0 = ;.
A belief for player i is a function �i : fa; rgi�1�fH;Lg ! [0; 1] which gives the probability

she assigns to the state being H given the decisions of the prior players and her own signal.

A (pure) strategy for player i is a function �i : fa; rgi�1 � fH;Lg ! fa; rg; which maps the
pro�le of decisions of prior players and her own private signal into a decision.

Interacting Cascades

We study interacting cascades in which there are two groups �A and B �each with N

players. In each group, the players move sequentially in a commonly known and exogenous

order. We write ig for the i-th player to move in group g 2 fA;Bg. The groups interact
via a common player who is a member of both groups and who is the k-th player to move

in each group. For simplicity, we take k to be odd and 1 < k < N .2 The arrangement of

the players is illustrated in Figure 1. Each player observes the decisions of the prior players

in her own group and an informative private signal prior to making her own decision. The

common player observes the decisions of the prior players in both groups.

Group A

Group B

1A k-1A

1B

NAk+1A

NBk+1B

2A

2B k-1B

k

Figure 1: An Interacting Cascade

For each player other than the common player, strategies and beliefs are as de�ned for a

basic cascade. For the common player k a belief is a function �k : fa; rg2(k�1)�fH;Lg ! [0; 1]

which gives the probability she assigns to the true state being H given the decision of the

2(k � 1) prior players and her private signal. A (pure) strategy for player k is a function
2We discuss the case where k is even in the Conclusion.

7



�k : fa; rg2(k�1) � fH;Lg ! fa; rg, which maps the decisions of the prior players and her
own private signal into a decision.

We write xgi for the signal of the i-th player in group g, we write �
g
i for her belief, d

g
i for

her decision, and �gi for her strategy. Since player k is a member of both groups, we denote

her decision by either dAk , d
B
k , or simply dk. We write �d

g
i for (d

g
1; : : : ; d

g
i ) for the decisions of

players 1 through i in group g.

A strategy pro�le � is a list

(�A1 ; �
B
1 ; : : : ; �

A
k�1; �

B
k�1; �k; �

A
k+1; �

B
k+1; : : : ; �

A
N ; �

B
N);

and a belief pro�le � is a list

(�A1 ; �
B
1 ; : : : ; �

A
k�1; �

B
k�1; �k; �

A
k+1; �

B
k+1; : : : ; �

A
N ; �

B
N):

Given a strategy pro�le �, the probability that the decision pro�le of the �rst i players

in group g is �di = ( �di�1; di) 2 fa; rgi when the true state is s is denoted by P g� ( �dijs), and
is de�ned recursively. For g 2 fA;Bg and i = 0; we de�ne �d0 = ? and P g� ( �d0js) = 1: For
g 2 fA;Bg and i = 1 we have

P g� (
�d1js) =

X
fxj�g1(x)=d1g

P (xjs):

For g 2 fA;Bg and i 2 f2; : : : ; Ngnfkg we have

P g� (
�di�1; dijs) = P g� ( �di�1js)

X
fxj�gi ( �di�1;x)=dig

P (xjs):

For g = A and i = k we have

PA� (
�dk�1; dkjs) = PA� ( �dk�1js)

X
�dBk�12fa;rgk�1

PB� (
�dBk�1js)

X
fxj�k( �dk�1; �dBk�1;x)=dkg

P (xjs);

whereas for g = B and i = k we have

PB� (
�dk�1; dkjs) = PB� ( �dk�1js)

X
�dAk�12fa;rgk�1

PA� (
�dBk�1js)

X
fxj�k( �dAk�1; �dk�1;x)=dkg

P (xjs):

De�nition: An equilibrium is a pro�le of (pure) strategies and beliefs (��; ��) such that ��

is sequentially rational and �� satis�es Bayes�rule (on the equilibrium path).
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Appendix A provides a formal de�nition of equilibrium. Sequential rationality requires

that each player�s decision be optimal given her belief. If �g�i ( �di�1; x) > 1=2, then player i�s

(expected) payo¤ to choosing a is

u(a;H)�g�i ( �di�1; x) + u(a;L)(1� �
g�
i (
�di�1; x)) = �

g�
i (
�di�1; x)� (1� �g�i ( �di�1; x)) > 0;

whereas her payo¤ to choosing r is zero. Hence, a is optimal. If �g�i ( �di�1; x) < 1=2, then r

is optimal. If �g�i ( �di�1; x) = 1=2, then a and r both yield a payo¤ of zero and are optimal.

In this case, our de�nition requires (as is common in the literature) that player i follows her

own signal, choosing a if she observes H and r if she observes L.

Proposition 1. Existence and Uniqueness of Equilibrium.

A (pure) strategy equilibrium exists. Equilibrium is unique up to o¤-equilibrium-path beliefs,

i.e., �x a pro�le of private signals (xA1 ; x
B
1 ; : : : ; xk; : : : ; x

A
N ; x

B
N), then the equilibrium outcome

(dA1 ; d
B
1 ; : : : ; dk; : : : ; d

A
N ; d

B
N) is the same in every equilibrium.

The players moving prior to the common player face the same game in an interacting

cascade and in a basic cascade. For these players, equilibrium play coincides with the equi-

librium play for the basic cascade given in Bikhchandani et al. (1992).

We need one de�nition before discussing the illustrative example in the next section.

De�nition: Player i is in a cascade given (pure) strategy �i and history �di�1 if her action

does not depend on her private signal, i.e., if �i( �di�1; H) = �i( �di�1; L).

Observe that if player i in group g is not in a cascade, then subsequent players in group g

can infer her signal from her decision.

3 An Illustrative Example

To illustrate our model and give intuition for our core results, we consider an example wherein

a group of co-workers, A(lice), B(ill), D(avid), E(mma), M(ichael), S(ue), and W(alter), each

decide whether to watch Net�ix�s latest new show on the night it is released. The show may

either be good (state H) or bad (state L) with equal probability. The players would like
to watch a good show, i.e., choose a if the state is H, and avoid watching a bad show, i.e.,
choose r if the state is L.
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The problem is that no one knows the quality of the show before it is released. However,

everyone has seen a promo about it (e.g., a billboard, online clip, etc.), i.e., they�ve each

received an informative private signal. For the sake of argument, we assume that the promo

correctly indicates the quality of the show with 2
3
-rds probability, i.e., p = 2

3
. In addition,

some of the coworkers subscribe to each other�s Net�ix �Social� feeds, and can observe

whether their peers are also watching the show.3 Speci�cally, Bill, David, and Walter,

collectively the Men, all subscribe to each other�s feeds. Likewise, the Alice, Emma, and

Sue, collectively the Women, all subscribe to each other�s feeds. Michael subscribes to

everyone�s feed.

Once Net�ix releases the show, the co-workers make their viewing decisions in alpha-

betical order. When a player moves, (s)he observes the feeds (s)he�s subscribed to and her

signal, and then makes her decision. To round out the example, we suppose that watching

a good show pays 1, while not watching pays 0; and watching a bad show pays �1. The
arrangement of players is illustrated in Figure 2.

Men

Women

B D W

A E S

M

Figure 2: Arrangement of Players in Example

Basic cascades

To see how a cascade forms, we focus on the Men and suppose, for the moment, that the

Women do not exist. Suppose that Bill�s (private) signal is L, i.e., the promo he watched

3Net�ix o¤ers its subscribers the ability to automatically share what they watch to social media sites

(e.g., Facebook), via a Net�ix Social feed. See www.net�ix.com for details. While this feed also shows one�s

ratings, we have in mind an environment where players are making their decisions so quickly that they have

yet to rate the show.
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indicates that Net�ix�s show is likely bad. Then, his belief is

��B(L) =
P (H)P (LjH)P

s2fH;Lg P (s)P (Ljs)
=

1
2
(1� p)

1
2
(1� p) + 1

2
p
=
1

3
;

and he optimally chooses not to watch, i.e., ��B(L) = r. If B�s signal had been H, then

��B(H) = 2=3 and B would have chosen a. B�s decision thus reveals his signal to David,

Michael, and Walter. Note that in state H the probability B chooses r is P��(rjH) = 1�p =
1=3, while in state L we have P��(rjL) = p = 2=3.
David sees Bill choose r and infers that B received a signal of L. If D�s signal is also L

(i.e., �dB = r and xD = L in the notation of the model) then his belief is

��D(r; L) =
P (H)P (LjH)P��(rjH)P
s2fH;Lg P (s)P (Ljs)P��(rjs)

=
1
2
(1� p)2

1
2
(1� p)2 + 1

2
p2
=
1

5
:

Thus, D also chooses r. If D�s signal had been H, then ��D(r;H) = 1=2 and D would have

chosen a, following his signal. D�s action therefore also reveals his signal.

Michael, after observing Bill and David choose not to watch, i.e., �dD = (r; r), infers that

they both received signals of L. Thus,

��M(r; r; xM) =

8><>:3=7 if xM = H

1=9 if xM = L;

which is less than 1=2 for both realizations of xM . Hence, M optimally follows the decisions

of B and D and also chooses r. Consequently, �dM = (r; r; r). As M�s decision does not

depend on his signal, his decision is uninformative to Walter. Therefore, W has the same

belief as M, i.e., ��W ( �dM ; x) = �
�
M(
�dD; x) for x 2 fL;Hg, and also chooses r.

When Bill and David both choose r, then Michael and Walter are in a cascade. M chooses

r because the information revealed by B and D�s decisions is strong enough to �outweigh�

his signal. Since M�s decision is uninformative, then W is in the same situation as M and

makes the same decision. This leads to our �rst observation.

Observation 1: In a basic cascade, if the private signals of the �rst two players (e.g., Bill

and David) are the same, then a cascade emerges, i.e., the third player and all subsequent

players make the same decision as the �rst two players.

If the signals of the �rst two players are not the same, then Michael is not in a cascade.

If David�s signal had been H rather than L, he would have chosen a. In this case, M infers
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�xD = (L;H) and has a belief

��M(r; a; xM) =

8><>:2=3 if xM = H

1=3 if xM = L:

Thus, M�s decision would depend on his signal.

Interacting Cascades

To see how cascades interact, we return to our initial setting with both Men and Women.

In light of Observation 1, we say that group g is in a cascade if the decisions of the �rst two

players in g are the same. We illustrate equilibrium play for the common player and the

subsequent players when: (i) one group is in a cascade and the other is not, and (ii) both

groups are in cascades on di¤erent actions.

To examine (i), suppose that the Men are in a cascade on not watching, i.e., both Bill

and David choose r, and that the Women are not in a cascade, e.g., Alice chooses a and

Emma chooses r. Thus, �dMD = (r; r) and �dWE = (a; r). Since these players follow their private

signals, Michael infers that �xMD = (L;L) and �dWE = (H;L). M�s belief given his signal xM is

��M(
�dMD ;

�dWE ; xM) =

8<:
1
2
p2(1�p)3

1
2
p2(1�p)3+ 1

2
p3(1�p)3 =

1
3
if xM = H

1
2
p(1�p)4

1
2
p(1�p)4+ 1

2
p4(1�p) =

1
9

if xM = L:

Thus, M decides r, regardless of his signal, following the action of the group that�s in a

cascade.

Table 1 summarizes how Michael�s (equilibrium) decision depends on his signal and the

private signals of Bill, David, Alice, and Emma. M will choose r if at least three of these

�ve signals are L and will choose a otherwise.

xM = H xM = L

Men (xB; xD) Women (xA; xE) Women (xA; xE)

HH HL LH LL HH HL LH LL

HH a a a a a a a r

HL a a a r a r r r

LH a a a r a r r r

LL a r r r r r r r

Table 1: Michael�s Decisions
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Continuing the example, suppose that Michael indeed chooses r. Walter observes �dMM =

(r; r; r), from which he infers that xB = xD = L. He cannot infer (xA; xE; xM). However, W

knows that the only signal pro�les, (xB; xD; xA; xE; xM), which are consistent with �dMM are

those in the last row of Table 1 except for the left-most cell (L;L;H;H;H). W calculates

that

PM�� (
�dMM jH) = 3p2(1� p)3 + 3p(1� p)4 + (1� p)5 =

19

243
;

and

PM�� (
�dMM jL) = 3p3(1� p)2 + 3p4(1� p) + p5 =

104

243
:

W�s belief, given signal xW , is4

��W (
�dMM ; xW ) =

8><>:
19
71

if xW = H

19
227

if xW = L.
(1)

Thus, W chooses r, regardless of his signal. This leads to our second observation.

Observation 2a: If group g is in a cascade and the other group is not, then the decision of

the common player follows the cascade and the cascade in g continues.

Let�s consider the Women. Sue observes �dWM = (a; r; r) and infers �xWE = (H;L). Since

Michael decided r, S knows that there were at least three L signals among (xB; xD; xA; xE; xM).

Since xA = H and xE = L, then S knows that Bill, David, and Michael collectively received

at least two L signals. The probability of this is 3p(1 � p)2 + (1 � p)3 if the state is H.5 S
calculates that

PW�� (
�dWM jH) = p(1� p)[3p(1� p)2 + (1� p)3] =

14

243

and, in an analogous manner, that

PW�� (
�dWM jL) = p(1� p)[3p2(1� p) + p3] =

40

243
:

S�s belief, given signal xS, is

��S(
�dWM ; xS) =

8<: 7
17

if xS = H
7
47

if xS = L.

4For instance,

�?W (
�dMM ;H) =

1
2pP

M
�� (

�dMM jH)
1
2pP

M
�� (

�dMM jH) + 1
2 (1� p)PM�� ( �dMM jL)

=
19

71
:

5There are three ways that two of the players could receive an L signal, and one way all three players

could receive an L signal.
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Thus, S chooses r regardless of her signal. Intuitively, M�s action conveys enough information

about the state to outweigh S�s private signal and the information revealed by Alice and

Emma�s decisions. The cascade on r �spills over�from the Men to the Women. This leads

to our third observation.

Observation 2b: If group g is in a cascade and the other group �g is not, then subsequent
players in �g follow the cascade. That is, the cascade spills over from one group to the

other.

We now consider the case in which both groups are in cascades on di¤erent actions.

Suppose that the Men are in a cascade on not watching, i.e., both Bill and David choose

r, and that the Women are in a cascade on watching, i.e., both Alice and Emma choose

a. Then Michael infers �xMD = (L;L) and �xWE = (H;H). Table 1 shows that M resolves his

decision in favor of his signal.

Suppose that xM = L and thus dM = r. Then �dMM = (r; r; r) and Walter�s belief is given

by (1), so he optimally chooses r and the cascade in the Men�s group continues. Sue, however,

observes �dWM = (a; a; r) and infers �xWE = (H;H). Table 1 shows that when xA = xE = H, then

Michael only chooses r if (xB; xD; xM) = (L;L; L). Hence, S�s history e¤ectively contains

three L signals and two H signals. S�s belief, given signal xS, is

��S(
�dWM ; xS) =

8><>:
1
2
if xS = H

1
5
if xS = L:

Hence, S chooses a if xS = H and r if xS = L, and so S is not in a cascade. Intuitively,

M�s decision to not watch conveys enough information to S for her to doubt her group�s

cascade on watching, but not enough to give rise to a new cascade. This leads to our next

observation.

Observation 3: If both groups are in cascades on di¤erent actions, then the cascade that

agrees with the common player�s action continues, while the cascade that disagrees with the

common player�s action ends.

Observations 2a, 2b, and 3 allow us to write Table 2, a description of how cascades

interact when the Men are in a cascade on a. In the table, �a�denotes a cascade on a,

�r� a cascade on r, and �n=a� denotes no cascade. For instance, the second row of the
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table shows that if the Men are in a cascade on a (before Michael moves) and the Women

aren�t in a cascade, then M chooses a, the Men remain in a cascade on a, and this cascade

is transmitted to the Women.

Existing Cascade Subsequent Cascade

Men Women dM Men Women

a a a a

a n=a a a a

r a a n=a

r r n=a r

Table 2: Michael�s E¤ect on Cascades in Both Groups

Table 2 shows our two �ndings for this example: (i) if one group is in a cascade and the other

is not, then the cascade is transmitted through the common player to the second group, and

(ii) when two cascades on opposite actions meet, one ends. It also shows that when both

groups cascade on the same action, then interaction has no e¤ect.

Welfare

When is interaction via a common player welfare improving? Table 2 indicates that the

common player Michael sometimes generates a bene�t. For instance, if the state is H, the
Men are in cascade on a (the correct action), and the Women are in a cascade on r (the

incorrect action), then when M chooses a he ends the Women�s incorrect cascade and raises

Sue�s payo¤. This comes with the risk, however, that M may choose r and end the Men�s

correct cascade, thereby decreasing Walter�s payo¤. To get a handle on this we need to

compare the (ex-ante) equilibrium payo¤s of Walter and Sue with and without a common

player.

In a basic cascade, where Michael is a regular player, Walter�s (and Sue�s) equilibrium

payo¤ is wB = 13=54. In an interacting cascade, where M is a common player, W�s equilib-

rium payo¤ is wI = 47=162. Since wI �wB = 4=81 > 0, W and S are better o¤when groups

interact than when they do not.6

The presence of a common player raises payo¤s by increasing the chance that players who

follow him choose the correct action. He accomplishes this by (i) ending incorrect cascades

6Equilibrium payo¤s in basic and interacting cascades are given in Proposition 5.
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more often than correct cascades and (ii) by transmitting correct cascades (to a group not

in a cascade) more often than incorrect cascades. For this illustrative example, we can show

that interaction always raises welfare. We will establish the following result in general.

Observation 4: Ex-ante (equilibrium) payo¤s in the interacting cascade are (strictly) higher

than ex-ante payo¤s in the basic cascade if p is su¢ ciently high or k is su¢ ciently large.

4 Results

In this section, we characterize equilibrium in interacting cascades. We also evaluate the

welfare consequences of the information spillovers resulting from the presence of a common

player, and we consider the welfare-maximizing placement of the common player.

Proposition 2 gives the behavior of players prior to the common player. Since, prior to

the common player, an interacting cascade is identical to the basic cascade introduced in

Bikhchandani et al. (1992), Proposition 2 follows from their results.

Proposition 2. In equilibrium, a player moving before the common player chooses a re-

gardless of her own signal (i.e., is in a cascade on a) if the number of a decisions by her

predecessors exceeds the number of r decisions by two or more. Similarly, a player chooses

r regardless of her own signal if the number of r decisions by her predecessors exceeds the

number of a decisions by two or more. Otherwise, a player follows her own signal, i.e., she

chooses a given signal H and r given signal L.

According to the proposition, if the number of a decisions by a player�s predecessors

exceeds the number of r decisions by two or more, then the player herself also chooses a.

All the players successors (among those who move before the common player) therefore

also choose a, regardless of their private signal. Hence, there is no further information

aggregation.

We say that a group is in a cascade on a (r) if the number of a (r) decisions by the �rst

k� 1 players in the group exceeds the number of r (a) decision by two or more. Proposition
3 identi�es the equilibrium behavior of the common player.

Proposition 3. In equilibrium, the common player chooses a (likewise r) regardless of her

own signal if either (i) both groups are in a cascade on a ( r), or (ii) one group is in a
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cascade on a ( r) and the other group is not in a cascade. Otherwise, the common player

follows her own signal, i.e., she chooses a given the signal H and r given the signal L.

According to the proposition, the common player�s action depends on her signal if neither

group is in a cascade or both groups are in cascades on di¤erent actions. Otherwise, the

common player herself ignores her own signal. A player in position i > k knows only whether

her own group was in a cascade prior to the common player, and thus can not tell whether

the common player is in a cascade.

Proposition 4 is our principle result. It identi�es the conditions under which (i) a cascade

�spills over�from one group to another, (ii) information spillovers end an existing cascade,

and (iii) the common player�s decision �triggers�a new cascade, i.e., begins a cascade where

there was none before.

Proposition 4: In equilibrium, if prior to the common player:

P4:1 : Both groups are in cascades on a, then each cascade continues, i.e., the common

player and all subsequent players in both groups choose a.

P4:2 : One group is in a cascade on a and the other group is not in a cascade, then the

cascade on a �spills over�to the other group, i.e., the common player and all the subsequent

players in both groups choose a.

P4:3 : Both groups are in cascades on di¤erent actions, then (i) the common player follows

her own signal, (ii) the cascade that agrees with the common player�s action continues, and

(iii) the cascade that disagrees with the common player�s action ends, i.e., player k + 1 in

the group whose cascade disagrees with the common player�s action follows her own signal.

P4:4 : Neither group is in a cascade, then the common player �triggers� two cascades, i.e.,

the common player follows her own signal and all subsequent players in both groups choose

the same action as the common player.

The analogous statements apply to cascades on r.

Proposition 5 gives each player�s equilibrium payo¤ in an interacting cascade.
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Proposition 5. In an interacting cascade, the equilibrium payo¤ of player i is

w(i; k) =

8>>>><>>>>:
2p�1
2
�(i+ 1) for i < k and odd

2p�1
2
�(2k) + (2p� 1)[�

2
�(k � 1)]2 for i = k

2p�1
2
�(2k) + (2p� 1)[�

2
�(k � 1)]2[1 + �

2
�(i� k)] for i > k and odd,

where � = 2p(1� p) and

�(i) =
1� � i

2

1� � :

Furthermore, w(i + 1; k) = w(i; k) for i odd, i.e., the even player moving immediately after

an odd player obtains the same payo¤ as the odd player.

We write wB(i) for the payo¤ of the i-th player to move in a basic cascade. One can

show that wB(i) = 2p�1
2
�(i + 1) and wB(i + 1) = wB(i) for odd i. Players moving prior to

the common player get the same payo¤ in an interacting cascade and a basic cascade since,

for them, an interacting cascade is a basic cascade.

The equilibrium payo¤s of players i and i+ 1 are the same when i is odd. For i 6= k this
is a consequence of the fact that i and i + 1 are either (i) both in the same cascade or (ii)

both follow their own signal. For i = k, this is also a consequence of (iii) that when neither

group is in a cascade the common player�s decision triggers a cascade, causing player k + 1

to make the same decision as player k.

Let c(i; k) denote the probability that player i correctly guesses the true state in equilib-

rium, i.e., chooses a if the state is H and chooses r if the state is L. Player i�s payo¤w(i; k)

can be written as 1
2
c(i; k) + 1

2
[�(1� c(i; k))] = c(i; k)� 1=2, i.e.,7

c(i; k) = w(i; k) + 1=2:

Since �(i) is increasing, the following is an immediate corollary of Proposition 5.

Corollary 1. Players positioned later in an interacting cascade obtain higher payo¤s and

have a higher probability of choosing the optimal action given the true state. More pre-

cisely, the payo¤ of every odd player is strictly greater than the payo¤ of the odd player who

immediately precedes her.
7If the true state is H, with probability c(i; k) player i�s chooses a and obtains 1 and chooses r and with

probability 1� c(i; k) obtains 0. If the true state is L, player i obtains 0 with probability c(i; k) and �1 with
probability 1� c(i; k).
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The Welfare Consequences of Information Spillovers

Our next results compare player payo¤s in interacting and basic cascades, and thus shed

light on the costs and bene�ts of information spillovers between groups. From Proposition

5 it is clear that w(k; k) > wB(k), i.e., the common player in an interacting cascade obtains

a higher payo¤ than her counterpart in a basic cascade. The intuition for this result is

straightforward: The common player has better information. Since she observes both groups,

she infers at least two more signals than her counterpart does in a basic cascade.

One might conjecture that the introduction of a common player raises the payo¤ of every

player who moves subsequently relative to what that player would obtain in a basic cascade.

This conjecture is not correct as the following example illustrates. Figure 3 below shows

player payo¤s as a function of position in an interacting cascade (with k = 3 and p = :6)

and in a basic cascade.

0.08$

0.10$

0.12$

0.14$

0.16$

0.18$

0.20$

1$ 3$ 5$ 7$ 9$ 11$ 13$ 15$ 17$ 19$ 21$

Pa
yo
ff&

Player&Posi,on&

Basic$Cascade$
Interac9ng$Cascade$

Figure 3: Payo¤s by Position, k = 3 and p = 0:4

In this example, players who move late in the basic cascade have higher payo¤s than

players in the same position in the interacting cascade. For Player 11, for instance, wB(11) �
0:189956 > w(11; 5) � 0:187595, and every player who moves subsequently has a higher

payo¤ in the basic cascade.

Player 11 is a¤ected in multiple ways (some good and others bad) by the information
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spillovers that occur through the common player. First, these spillovers may cause an existing

cascade to end. If players 1A and 2A both make the correct decision, then in the basic

cascade game Player 3A and every subsequent player is in a cascade and makes the correct

decision as well. In contrast, in the interacting cascade game, if Players 1A and 2A both

make the correct decision, then Player 11A makes a correct decision only with probability

:9622. In particular, if group B is in a cascade on the incorrect action, the information

spillover may end the correct cascade in group A, thereby lowering Player 11A�s payo¤.

Conversely, information spillovers may end an incorrect cascade. If players 1A and 2A both

make the incorrect decision, then in the basic cascade game every subsequent player makes

the incorrect decision as well. In contrast, in an interacting cascade Player 11A makes the

correct decision with probability :1885.

A more subtle e¤ect of information spillovers is their potential to suppress positive infor-

mation externalities. Suppose that Players 1A and 2A make opposing decisions. In the basic

cascade game, Player 3A follows her own signal and chooses the correct action with proba-

bility p (:6 in this example). Player 11A, however, makes the correct decision with a higher

probability of :6874. The di¤erence between these probabilities is the positive information

externality that Player 11A enjoys from observing the decisions of players 3A through 10A:

In the interacting cascade, by contrast, when players 1A and 2A make opposing decision, the

players in group A are certain to be in an information cascade on the common player�s de-

cision, and thus enjoy no additional information externalities.8 The probability that Player

11A makes the correct decision is only :6480.

The strength of these e¤ects depends on the signal accuracy and the location of the

common player. If k = 5, then the probability that Player 11A makes the correct decision,

conditional on players 1A to 4A following their own signals, is almost the same in the basic

cascade (:6821) and an interacting cascade (:6710). Likewise, the probability that a cascade

on the correct action is upset rises to .0566, while the probability that a cascade on the

incorrect action is upset rises to .2776.

Proposition 6 identi�es conditions under which the common player aggregates information

in a strong sense � she obtains a higher payo¤ than every player in a basic cascade. In

particular, so long as either information sharing does not occur �too early�or private signals

8In particular, either a cascade in B spills over to group A (see P4.2) or the common player triggers a

cascade in A (see P4.4).
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are su¢ ciently informative, then a player is better o¤ by being the common player (and

observing the decision of k � 1 member of each group) than she is by being in any position
in a basic cascade (and observing the decisions of any number of the prior players in her

group). In other words, the information revealed from observing the �rst k � 1 decisions in
each group is more valuable than the information revealed by observing any number of prior

decisions in a basic cascade.

Proposition 6. The payo¤ of the common player in an interacting cascade exceeds the

payo¤ of every player in a basic cascade, i.e., w(k; k) > wB(i) for every i 2 f1; : : : ;1g, if
either k � 5 or k = 3 and p � 1

6

p
3 + 1

2
. If k = 3 and p < 1

6

p
3 + 1

2
, then there is an i0

such that w(k; k) < wB(i) for i � i0.

Since payo¤s are higher for players moving later in the cascade, i.e., since w(i; k) is

increasing in i, we have for i > k that

w(i; k) � w(k; k) > wB(i):

The next corollary is immediate.

Corollary 2. If either k � 5 or k = 3 and p � 1
6

p
3 + 1

2
then the payo¤ of every player

i � k is strictly higher in an interacting cascade than in a basic cascade.

Under the assumptions of Corollary 2, the presence of a common player is welfare enhancing

in a strong sense: the common player and every one of her successors in an interacting

cascade is better o¤ than a player in the same position in a basic cascade. Since the payo¤

of players moving before the common player is the same as in a basic cascade, we conclude

that everyone is (weakly) better o¤ with information spillovers than without information

spillovers.9

Placement of the Common Player
9We imagine getting rid of information spillovers by removing the common player from group B. To

be more precise, we name the players by their positions in the interacting cascade. After we remove the

common player from group B, our groups are A = f1A; : : : ; k� 1A; k; k+1A; : : : ; NAg and B = f1B ; : : : ; k�
1B ; k + 1B ; : : : ; NBg. Since the groups are unconnected, they each play a basic cascade where players move
according to their initial indices.
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If information is shared between groups, when should it be shared? There is a trade-o¤

between the number of players who bene�t from information sharing and the quality of the

information shared. If the common player moves early, then more players subsequently enjoy

the bene�ts of information spillovers. However, if the common player moves later, she and

her successors are better-informed and more likely to take the correct action.

Here we consider positioning the common player in order to maximize total surplus. Total

surplus in an interacting cascade is

W (N; p; k) = w(k; k) +
X

i2f1;:::;Ngnfkg

2w(i; k);

since there is a single common player, two identical players in the i-th position of each group,

and equilibrium is symmetric. Our objective is to choose k, where 1 < k < N and k is odd,

to maximizeW (N; k). Let k�(N; p) denote the (smallest) solution. If k = 1, the total surplus

is just twice the surplus of a basic cascade, and thus never maximizes total surplus.

A useful way to proceed is to think about the e¤ect on payo¤s of moving the common

player from position k (> 3) to position k�2. We do this by picking up the common player,
shifting the players occupying positions k � 2 and k � 1 one position to the right to �ll in
the gap, and then inserting the common player into the now empty k � 2 position. The top
panel of Figure 4 depicts the original game and the bottom depicts the new game. The �gure

shows, for instance, that player k � 2A moves from position k � 2 in group A to position

k � 1 in group A.
We consider the e¤ect on total surplus of this move. The payo¤s of players 1 through

k � 3 are the same in both games since they don�t change position and their payo¤s don�t
depend on the common player�s position (see Proposition 5). However, the payo¤s of each

of the remaining players change since they depend on the common player�s position.

The payo¤s of players k�2 and k�1 increase as they have better information about the
state. To see this for player k � 2, recall that in the original game her payo¤ is w(k � 2; k),
while in the new game her payo¤ is w(k � 1; k � 2). By Proposition 5, we have

w(k � 2; k) =
2p� 1
2

�(k � 1)

<
2p� 1
2

�(2k � 4) + (2p� 1)[�
2
�(k � 3)]2[1 + �

2
�(1)]

= w(k � 1; k � 2);
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Figure 4: Moving the Common Player

where the strict inequality holds since � is increasing and k > 3 implies 2k� 4 > k� 1. The
common player�s payo¤ decreases as she observes fewer decisions and, thus, less information.

The e¤ect on the payo¤s of the remaining players is ambiguous since, for i > k, the sign of

w(i; k)�w(i; k� 2) depends on i. For instance, if p = 0:6, then Player 25�s surplus increases
by 0:00178 (from 0:24952 to 0:25130) when the common player is moved from position 21 to

position 19, while Player 29�s surplus decreases by 0:00003 (from 0:25300 to 0:25297). One

can show W (29; :6; 21) = 11:1836 and W (29; :6; 19) = 11:4281, and hence the e¤ect on total

surplus is positive when N = 29. The e¤ect on total surplus, however, can be made negative

if N is made su¢ ciently large.

Proposition 7 shows that, for p su¢ ciently close to one, total surplus increases when the

common player moves from position k to k � 2 (as in Figure 4). In other words, when the
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signal accuracy is high, then the bene�t of realizing information spillovers earlier exceeds the

cost of reduced information aggregation.

Proposition 7. For each odd k > 3, there exists a pk < 1 such that moving the common

player from position k to k�2 increases total surplus when p 2 [pk; 1), i.e., W (N; p; k�2) >
W (N; p; k) for all p 2 [pk; 1).

It follows immediately that k�(N; p) = 3 for p su¢ ciently close to 1. In other words,

when the signal accuracy is high, then the gains to aggregating the information of more

than the �rst two players in each group are more than o¤set by the bene�ts from realizing

information spillovers immediately.

Corollary 3. There is a pN < 1 such that k�(N; p) = 3 for all p 2 [pN ; 1).

Table 3 illustrates how W (N; p; k) depends on p and k when N = 15 (i.e., there are 14

players in each group and one common player).

p k = 3 k = 5 k = 7 k = 9 k = 11 k = 13

0.55 2.583 2.900 2.928 2.851 2.737 2.617

0.65 7.342 8.033 8.054 7.865 7.611 7.351

0.75 11.016 11.566 11.511 11.321 11.102 10.883

0.85 13.275 13.440 13.371 13.278 13.183 13.089

0.95 14.273 14.266 14.255 14.245 14.234 14.223

Bold indicates a maximum

Table 3: W (15; p; k)

If p = 0:55, for example, then total surplus is maximized with the common player in position

7. The table illustrates that, as signals become more informative, the optimal position of

the common player moves earlier.

There is a weak, �dual�result to Corollary 3: for each integer n � 3; there is a p0 > 1
2

such that k�(N; p) > n for all p 2 (1
2
; p0] and N su¢ ciently large. That is, it is best to

wait before aggregating information when p is su¢ ciently close to 1
2
and a large number of

players move after the third position. This result is not particularly surprising in light of

our previous discussion and Table 3, so we omit the proof.
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5 Conclusion

We have shown that when groups share members in common then: (i) a convention may

spillover from one group to another via the common player; (ii) a convention in a group will

be broken if it disagrees with the action of the common player; and (iii) a convention can be

triggered by the action of common player when no prior convention existed.

We conclude with a discussion of the robustness of our results. Our assumption that the

each player�s signal has the same precision is not essential. If instead the signal precisions of

the members of groups A and B (excluding the common player) are pA and pB, respectively,

and that of the common player is p, then Propositions 1 through 4 go through without

modi�cation provided that pA, pB, and p are close. Since the equilibrium is invariant to

small changes in the signal precisions, the equilibrium payo¤s (Proposition 5) are continuous

functions of pA, pB, and p in the neighborhood of pA = pB = p. Thus, as in Proposition

6, either k � 5 or p > 1
6

p
3 + 1

2
are su¢ cient for the common player�s payo¤ to exceed the

payo¤ of every player in a basic cascade, provided pA and pB are in a neighborhood of p.

Propositions 1 through 4 also go through without modi�cation if the numbers of players

in each group that move prior to the common player are unequal (so long as the common

player has an odd position in each group). However, the expression for payo¤s in Proposition

5 relies on the symmetry of the baseline model, and thus one would need to develop new

expressions for payo¤s and new su¢ cient conditions for the payo¤ of the common player to

exceed those of all the other players.

The structure of equilibrium is more complex when the common player is in an even

position. The reason is that an odd number of players move before the common player in

each group. Thus, when the common player observes that neither group is in a cascade, her

posterior belief is no longer uniform, but rather depends on the decisions of players k�1A and
k�1B. That said, our results remain qualitatively the same � in particular, interaction still

results in the spillover, breakage, and triggering of cascades under very similar circumstances.

Results are available upon request.
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6 Appendix A: Existence and Uniqueness

We �rst provide a formal de�nition of equilibrium, then we prove Proposition 1.

De�nition. An equilibrium is a pro�le of (pure) strategies and beliefs (��; ��) such that ��

is sequentially rational and �� satis�es Bayes�rule:

(i) Sequential Rationality

For g 2 fA;Bg, and i 2 f1; : : : ; Ngnfkg, and �di�1 2 fa; rgi�1, and x 2 fH;Lg we have:

�g�i (
�di�1; x) =

8><>:a if �g�i ( �di�1; x) >
1
2

r if �g�i ( �di�1; x) <
1
2
;

and

�g�i (
�di�1; x) =

8><>:a if �g�i ( �di�1; x) =
1
2
and x = H

r if �g�i ( �di�1; x) =
1
2
and x = L.
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Further, for ( �dAk�1; �d
B
k�1) 2 fa; rg2(k�1) and x 2 fH;Lg we have:

��k(
�dAk�1;

�dBk�1; x) =

8><>:a if �g�k ( �d
A
k�1;

�dAk�1; x) >
1
2

r if �g�k ( �d
A
k�1;

�dBk�1; x) <
1
2
;

and

��k(
�di�1; x) =

8><>:a if �g�k ( �d
A
k�1;

�dBk�1; x) =
1
2
and x = H

r if �g�k ( �d
A
k�1;

�dBk�1; x) =
1
2
and x = L.

(ii) Bayes�Rule

For g 2 fA;Bg, and i 2 f2; : : : ; Ngnfkg, and �di�1 2 fa; rgi�1, and x 2 fH;Lg we have
that

�g�i (
�di�1; x) =

P g��(
�di�1jH)P (xjH)P (H)P

s2fH;Lg P
g
��(
�di�1js)P (xjs)P (s)

;

if P g��( �di�1js) > 0 for some s. Further, for ( �dAk�1; �dBk�1) 2 fa; rg2(k�1) and x 2 fH;Lg we have
that

��k(
�dAk�1;

�dBk�1; x) =
PA��(

�dAk�1jH)PB��( �dBk�1jH)P (xjH)P (H)P
s2fH;Lg P

A
��(
�dAk�1js)PB��( �dBk�1js)P (xjs)P (s)

;

if PA��( �d
A
k�1js)PB��( �dBk�1js) > 0 for some s.

Proof of Proposition 1: A strategy pro�le � implies a mapping e = (eA1 ; e
B
1 ; : : : ; ek;

: : : ; eAN ; e
B
N) from signal pro�les x = (xA1 ; x

B
1 ; : : : ; xk; : : : ; x

A
N ; x

B
N) 2 fH;Lg2N�1 to deci-

sion pro�les d = (dA1 ; d
B
1 ; : : : ; dk; : : : ; d

A
N ; d

B
N) 2 fa; rg2N�1 as follows: For i = 1, eg1(x) =

�g1(x
g
1). For players i < k, egi (x) = �gi (e

g
1(x); : : : ; e

g
i�1(x); x

g
i ). For player k as ek(x) =

�k(e
A
1 (x); : : : ; e

A
k�1(x); e

B
1 (x); : : : e

B
k�1(x); xk). For player k + 1 as ek+1(x) = �

g
k+1(e

g
1(x); : : : ;

egk�1(x); ek(x); x
g
k+1). For players i > k + 1 as e

g
i (x) = �

g
i (e

g
1(x); : : : ; e

g
k�1(x); ek(x); e

g
k+1(x);

: : : ; egi�1(x); x
g
i ).

We prove that this mapping is the same for every equilibrium, and then we construct a

pure strategy equilibrium. The proof is by induction. Without loss of generality, we focus

on group A. Consider player 1A. If xA1 = H then in any equilibrium since player 1�s beliefs

satis�es Bayes�rule, and thus

�A�1 (
�d0; H) =

P ( �d0jH)P (HjH)P (H)P
s2fH;Lg P (

�d0Ajs)P (Hjs)P (s)
=

1
2
p

1
2
p+ 1

2
(1� p)

= p;
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as P ( �d0js) = 1 for each s. Since p > 1
2
, sequential rationality implies �A�1 (H) = a in any

equilibrium. Analogously, �A�1 ( �d0; L) = 1�p and thus �A�1 (L) = r. Thus eA1 (x) = a whenever
xA1 = H and eA1 (x) = r whenever x

A
1 = L in every equilibrium. Similarly for B.

Assume that the mapping e for the �rst i � 1 players (eA1 ; eB1 ; : : : ; eAi�1; eBi�1) is the same
for every equilibrium. For each �dAi�1 in the range of (e

A
1 ; : : : ; ek; :::; e

A
i�1)(x), we have that (i)

PA� (
�dAi�1js) is the same for every equilibrium (�; �) (as the map (eA1 ; : : : ; ek; : : : ; e

A
i�1) is the

same for every equilibrium) and (ii) P�( �dAi�1js) > 0 for each s (since each pro�le of signals
occurs with strictly positive probability in each state). Since �A�i ( �d

A
i�1; x) satis�es Bayes�

Rule in any equilibrium, then

�A�i (
�dAi�1; x

A
i ) =

PA� (
�dAi�1jH)P (xAi jH)P (H)P

s2fH;Lg P
A
� (
�dAi�1js)P (xAi js)P (s)

for each xAi 2 fH;Lg and is the same in every equilibrium. Furthermore, sequentially rational
implies that for each xAi 2 fH;Lg we have that

�A�i (
�dAi�1; x

A
i ) =

8><>:a if �A�i ( �d
A
i�1; x

A
i ) >

1
2
, or xAi = H and �A�i ( �d

A
i�1; x

A
i ) =

1
2

r if �A�i ( �d
A
i�1; x

A
i ) <

1
2
, or xAi = L and �

A�
i (
�dAi�1; x

A
i ) =

1
2
;

and is the same in every equilibrium. Thus eAi (x) =( �di�1; �
A�
i (
�di�1; x

A
i )), where �d

A
i�1 =

(eA1 ; : : : ; e
A
i�1)(x), is the same in every equilibrium. Similarly for B. Hence, the equilibrium

mapping from signal pro�les to decision pro�les is uniquely determined: �xing a pro�le of

private signals x, then the equilibrium outcome d is the same in every equilibrium. (When i

is the common player, an analogous argument applies, save that we must consider histories

�dAk�1 and �d
B
k�1 in the ranges of (e

A
1 ; : : : ; e

A
k�1) and (e

B
1 ; : : : ; e

B
k�1).)

It remains to be shown that an equilibrium exists. Consider group A. For each i,

xAi 2 fH;Lg, and �dAi�1 such that P�( �dAi�1js) > 0, let � and � be given as above. For �dAi�1

such that P�( �dAi�1js) = 0, let �Ai ( �dAi�1; xAi ) = 1=2 and let �Ai ( �dAi�1; xAi ) be sequentially rational
given �Ai ( �d

A
i�1; x

A
i ), i.e., player i follows her own signal. The construction for group B and

the common player is analogous. Then (�; �) satis�es sequential rationality and Bayes rule

by construction. Thus an equilibrium exists. �
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7 Appendix B: Characterization of Equilibrium

We begin with a few de�nitions, present four lemmas which completely characterize the

players�equilibrium play, and the prove all of our results, except for Proposition 1. The

proofs of these key lemmas are tedious and are given in the online Appendix C.

A history �di = (d1; : : : ; di) is balanced if, for every odd integer j < i, we have that

dj 6= dj+1, and is unbalanced otherwise. A balanced history is one where the number of

a decisions does not exceed the number of r decisions by more than one as of any player

1; :::; i. Any singleton or null history is trivially balanced. For instance, (a) and (r; a; a; r) are

balanced, whereas (a; r; a; a) and (r; r; r) are unbalanced. Let Db
i be the set of all balanced

i-length histories.

Let i > 1. A history �di = (d1; : : : ; di) is unbalanced on a if at some point in the pro�le

it switches from a balanced pro�le to a pro�le of all as, i.e., if there is an odd j < i such

that (i) (d1; : : : ; dj) is balanced and (ii) dj = dj+1 = � � � = di = a. For instance, (a; a) and
(a; r; a; a) are unbalanced on a, whereas (a; r; a; a; r) is not unbalanced on a. Let Da

i be the

set of all i-length histories that are unbalanced on a. Analogously, we say that a history

�di = (d1; : : : ; di) is unbalanced on r if there is an odd j < i such that (i) (d1; : : : ; dj) is

balanced and (ii) dj = dj+1 = � � � = di = r. Let Dr
i be the set of all i-length histories that

are unbalanced on r. (As we�ll make clear, player j +1 is the last player to follow her signal

in equilibrium.)

Lemma B1. Equilibrium play for predecessors of the common player.

Let i < k and g 2 fA;Bg. If �dgi�1 belongs to a row in Table B1(a), then player ig�s

equilibrium strategy �g�i ( �d
g
i�1; x

g
i ) is given by the last two columns. Otherwise, �

g�
i (
�dgi�1; H)
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and �g�i ( �d
g
i�1; L) are arbitrary.

�g�i (
�dgi�1; x

g
i )

�dgi�1 H L

Da
i�1 a a

Db
i�1 a r

Dr
i�1 r r

(a) Player ig < k

��k(
�dAk�1;

�dBk�1; xk)

�dAk�1
�dBk�1 H L

Da
k�1 a a

Da
k�1 Db

k�1 a a

Dr
k�1 a r

Da
k�1 a a

Db
k�1 Db

k�1 a r

Dr
k�1 r r

Da
k�1 a r

Dr
k�1 Db

k�1 r r

Dr
k�1 r r

(b) Player k

Table entries in bold indicate when a player follows her signal.

Table B1: Equilibrium Strategies of Players 1 through k.

Proof. Given in Appendix C. �

For instance, if player i observes a history that is unbalanced on a then she chooses

a, ignoring her own signal (i.e., if �dgi 2 Da
i�1, then Table B1(a) shows that �

g�
i (
�dgi�1; H) =

�g�i (
�dgi�1; L) = a). If player i observe a balanced history, then she follows her own signal.

Lemma B2. Equilibrium play for the Common Player.

If ( �dAk�1; �d
B
k�1) belongs to a row in Table B1(b), then the common player�s equilibrium strat-

egy ��k( �d
A
k�1;

�dBk�1; xk) is given by the last two columns. Otherwise, �
�
k(
�dAk�1;

�dBk�1; H) and

��k(
�dAk�1;

�dBk�1; L) are arbitrary.

Proof. Given in Appendix C. �

The next proposition identi�es the behavior of players moving after the common player.

Lemma B3. Equilibrium After the Common Player.

Let g 2 fA;Bg.
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B3:1 : (Player k + 1g.) If �dgk = ( �dgk�1; dk) belongs to a row in Table B2(a), then player

k + 1g�s equilibrium strategy �g�k+1( �d
g
k; x

g
k+1) is given by the last two columns. Otherwise,

�g�k+1(
�dgk; H) and �

g�
k+1(

�dgk; L) are arbitrary.

B3:2 : (Player k+2g.) If �dgk+1 = ( �d
g
k�1; dk; d

g
k+1) belongs to a row in Table B2(b), then player

k + 2g�s equilibrium strategy �g�k+2( �d
g
k+1; x

g
k+2) is given by the last two columns. Otherwise,

�g�k+2(
�dgk+1; H) and �

g�
k+2(

�dgk+1; L) are arbitrary.

B3:3 : (Subsequent players.) Let i > k + 2. If �dgi�1 = ( �d
g
k�1; dk; d

g
k+1; d

g
k+2; : : : ; d

g
i�1) belongs

to a row in Table B2(c), then player ig�s equilibrium strategy �g�i ( �d
g
i�1; x

g
i ) is given by the

last two columns. Otherwise, �g�i ( �d
g
i�1; H) and �

g�
i (
�dgi�1; L) are arbitrary.

�g�k+1(
�dgk; x

g
k+1)

�dgk�1 dk H L

Da
k�1 a a a

r a r

Db
k�1 a a a

r r r

Dr
k�1 a a r

r r r

(a) Player k + 1g

�g�k+2(
�dgk+1; x

g
k+2)

�dgk�1 dk dgk+1 H L

a a a a

Da
k�1 r a a r

r r r r

Db
k�1 a a a a

r r r r

a a a a

Dr
k�1 a r a r

r r r r

(b) Player k + 2g
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�g�i (
�dgi�1; x

g
i )

�dgk�1 dk dgk+1 (dgk+2; : : : ; d
g
i�1) H L

a a (a; : : : ; a) a a

Da
i�k�2 a a

Da
k�1 r a Db

i�k�2 a r

Dr
i�k�2 r r

r r (r; : : : ; r) r r

Db
k�1 a a (a; : : : ; a) a a

r r (r; : : : ; r) r r

a a (a; : : : ; a) a a

Da
i�k�2 a a

Dr
k�1 a r Db

i�k�2 a r

Dr
i�k�2 r r

r r (r; : : : ; r) r r

(c) Player ig > k + 2g

Table B2: Equilibrium Strategies of Players k + 1 through N .

For instance, if �dgk�1 2 Da
k�1 and dk = a, then the top row of Table B2(a) shows that

player k + 1g is in a cascade on a. The intuition underlying of B3:1 is the same as for Sue

and Walter�s behavior in the Example. While B3:2 and B3:3 are more complicated, similar

intuition underlies them.

Proof. Given in Appendix C. �

The following technical lemma is useful. For a set T � Da
i [ Db

i [ Dr
i ; we de�ne

Prob(T js) =
P

�di2T P��(
�dijs); where �� is the strategy pro�le of an equilibrium.

Lemma B4. Let i < k and g 2 fA;Bg. If �dgi is a history that results from equilibrium

play, then �dgi 2 Da
i [Db

i [Dr
i . In addition, we have

Prob(Db
i js) =

8><>:�
i
2 for i even

�
i�1
2 for i odd,

Prob(Da
i js) =

8><>:P (Hjs)
2�(i) for i even

P (Hjs)2�(i� 1) for i odd,
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Prob(Dr
i js) =

8><>:P (Ljs)
2�(i) for i even

P (Ljs)2�(i� 1) for i odd.

Proof. Given in Appendix C. �

Proof of Proposition 2. In equilibrium, player i observes a history �di�1 in either Da
i�1,

Db
i�1, or D

r
i�1 by Lemma B4. For histories where the number of a decisions exceeds the

number of r decisions by two or more, we have �di�1 2 Da
i�1 and player i chooses a by Table

B1 of Lemma B1. Likewise, for histories �di�1 2 Dr
i�1 the number of r decisions exceeds the

number of a decisions by two or more, and she chooses r. Otherwise, player i observes a

history in Db
i�1 in which case she follows her own signal. �

Proof of Proposition 3. This result follows directly from Lemmas B2 and B4. By Lemma

B4, in equilibrium, the common player observes a pair of histories ( �dAk�1; �d
B
k�1) 2 (Da

k�1 [
Db
k�1 [Dr

k�1)
2. It follows, from Lemma B2, that if:

(i) Both groups are in a cascade on a (r), i.e., �dAk�1 and �d
B
k�1 are in D

a
k�1 (D

r
k�1), then the

common player chooses a (r).

(ii) One group is in a cascade on a (r) and the other is not in a cascade, i.e., either �dAk�1 2 Da
k�1

( �dAk�1 2 Dr
k�1) and �d

B
k�1 2 Db

k�1 or �d
A
k�1 2 Db

k�1 and �d
B
k�1 2 Da

k�1 ( �d
B
k�1 2 Dr

k�1), then the

common player chooses a (r).

(iii) Neither group is in a cascade, i.e., �dAk�1 2 Db
k�1 and �d

B
k�1 2 Da

k�1, then the common

player follows her signal. �

Proof of Proposition 4. We establish each part via iterative application of Lemmas B2,

B3, and B4.

P4:1. Since both groups are in cascades on a, we have that �dAk�1 and �d
B
k�1 are in D

a
k�1 by

Lemma B4. Thus, Lemma B2 gives that the common player chooses a. Hence successive

application of Lemma B3 gives that every subsequent player in group g chooses a. To

illustrate, consider player k + 1g who observes ( �dgk�1; a) and so chooses a regardless of the

value of her signal by Lemma B3.1. It follows that player k + 2g observes ( �dgk�1; a; a) and

so chooses a by Lemma B3.2. Player k + 3g then observes ( �dgk�1; a; a; a) and chooses a by

Lemma B3.3. Player k + 4g thus observes ( �dgk�1; a; a; a; a) and also chooses a by Lemma
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B3.3. Continuing the application of Lemma B3.3 gives that every subsequent player k + 5g

to N g also chooses a. It follows that the cascade continues in group g. Since g was arbitrary,

Proposition 4.1 follows.

P4:2. Since one group is in a cascade and the other isn�t, by Lemma B4 we have �dAk�1 2 Da
k�1

( �dAk�1 2 Dr
k�1) and �d

B
k�1 2 Db

k�1 or �d
A
k�1 2 Db

k�1 and �d
B
k�1 2 Da

k�1 ( �d
b
k�1 2 Dr

k�1). Without

loss, we consider the case of �dAk�1 2 Da
k�1 and �d

B
k�1 2 Db

k�1. Lemma B2 gives that the common

player chooses a. Thus, successive application of Lemma B3 gives that every subsequent

player in both groups also chooses a.

P4:3. Since both groups are in opposing cascades, by Lemma B4 we have (i) �dAk�1 2 Da
k�1

and �dBk�1 2 Dr
k�1 or (ii) �d

A
k�1 2 Dr

k�1 and �dBk�1 2 Da
k�1. Without loss, we consider case

(i). Lemma B2 gives that the common player follows her signal xk. Suppose she gets signal

xk = H and so chooses a by Lemma B2. Thus, successive application of Lemma B3 gives

that every subsequent player in group A chooses a. However, player k+1B observes ( �dBk�1; a)

and follows her signal by Lemma B3.1. Since an analogous argument applies if xk = L, with

the roles of groups A and B reversed, Proposition 4.3 follows.

P4:4. Since neither group is in a cascade, by Lemma B4 we have that �dAk�1 and �d
B
k�1 are in

Db
k�1. Lemma B2 gives that the common player follows her signal xk. Suppose xk = H so

the common player chooses a. Then successive application of Lemma B3 gives that every

subsequent player in both groups chooses a. Since an analogous argument applies if xk = L,

Proposition 4.4 follows. �

Proof of Proposition 5. The proof is computational. We �rst consider the case of i < k,

then we consider the case of i � k. Without loss, we take i to be in group A.

Case (i), i < k : Since i is less than k, Lemmas B1 and B4 give that i chooses a if (i)

�dAi�1 2 Db
i�1 and x

A
i = H or (ii) �dAi�1 2 DA

i�1. Thus, Lemma B4 gives that the probability i

chooses a given the state is s is

Prob(i chooses ajs) =

8><>:�
i�2
2 P (Hjs) + (P (Hjs))2

1�� (1� �
i�2
2 ) for i even

�
i�1
2 P (Hjs) + (P (Hjs))2

1�� (1� �
i�1
2 ) for i odd:

Thus, i�s ex-ante payo¤ is

w(i; k) = Prob(i chooses ajH)P (H)� Prob(i chooses ajL)P (L);
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which simpli�es to the stated expression. (We may ignore the times when i chooses r because

choosing r always gives zero.)

Case (ii), i � k : We proceed by conditioning the expectation on the state and the type of
cascades in both groups, as then Proposition 4 gives the decisions of all subsequent players.

The exception is when both groups are in cascades on di¤erent actions. In these cases, we

(successively) apply Lemma B3 to �nd the probability that a player chooses a. It is useful

to di¤erentiate these cases. Let g 2 fA;Bg and let cg 2 fa; n; rg denote the type of cascade
in group g before k (e.g., cg = a () �dgk�1 2 Da

k�1). Let C2 = f(a; r); (r; a)g be the set of
cascades on di¤erent actions and C1 = fa; n; rg2nC2 be the set of all other cascades.
Since the signals are conditionally independent given the state, we have that cA and cB

are also conditionally independent given the state. Thus, w(i; k) = g1(i; k) + g2(i; k), where

g1(i; k) =
X

s2fH;Lg
(cA;cB)2C1

u(a; s)Prob(i chooses ajs; cA; cB)Prob(cAjs)Prob(cBjs)P (s)

g2(i; k) =
X

s2fH;Lg
(cA;cB)2C2

u(a; s)Prob(i chooses ajs; cA; cB)Prob(cAjs)Prob(cBjs)P (s):

Here Prob(i chooses ajs; cA; cB) is the probability that i chooses a in state s, and Prob(cjs)
is given by Lemma B4.

First, we calculate g1. Proposition 4 gives that if (cA; cB) 2 f(a; a); (a; n); (n; a)g, then
i chooses a with certainty, so Prob(i chooses ajs; cA; cB) = 1 for both states H and L.
If (cA; cB) = (n; n), then all players after k choose dk with certainty. Since Lemma B2

gives dk = a if and only if xk = H, we have dk = a with probability P (Hjs). Hence,
Prob(i chooses ajH; cA; cB) = p and Prob(i chooses ajL; cA; cB) = (1 � p). Plugging these
conditional probabilities into the expression for g1 and simplifying gives

g1(i; k) =
(2p� 1)(1� �k)

2(1� �) :

Now we calculate g2. Since the cascades are in C2, we successively employ Lemma B3 to

calculate the probability that i chooses a. Table B3 gives the results of these computations.
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Prob(i chooses ajs; cA; cB)
Player Position (cA; cB) = (a; r) (cA; cB) = (r; a)

k P (Hjs) P (Hjs)
k + 1 P (Hjs) + P (Ljs)P (Hjs) P (Hjs)2

k + 2 P (Hjs) + P (Ljs)P (Hjs)2 P (Hjs)2 + P (Ljs)P (Hjs)2

i > k + 2 and i odd P (Hjs) P (Hjs)2

+P (Ljs)P (Hjs)2�
i�k�2

2 +P (Ljs)P (Hjs)2�
i�k�2

2

+P (Ljs)P (Hjs)3�(i� k � 2) +P (Ljs)P (Hjs)3�(i� k � 2)
i > k + 2 and i even P (Hjs) P (Hjs)2

+P (Ljs)P (Hjs)2�
i�k�3

2 +P (Ljs)P (Hjs)2�
i�k�3

2

+P (Ljs)P (Hjs)3�(i� k � 3) +P (Ljs)P (Hjs)3�(i� k � 3)

Table B3: Probability Player i Chooses a

We illustrate the construction of the bottom-left cell: (cA; cB) = (a; r), i > k + 2, and

i even. We begin by noting that successive application of Lemma B3 shows that the only

histories i observes in equilibrium are those listed in Table B2(c). Thus, i chooses a if (i)

dk = d
A
k+1 = : : : = d

A
i�1 = a (i.e., a cascade on a immediately after k), (ii) dk = r, d

A
k+1 = a,

(dAk+2; : : : ; d
A
i�1) 2 Db

i�k�2 (i.e., no cascade after k), and x
A
i = H, or (iii) dk = r, d

A
k+1 = a,

and (dAk+2; : : : ; d
A
i�1) 2 Da

i�k�2 (i.e., a cascade on a at some point after k). Since Lemma

B2 gives dk = a () xk = H, the (conditional) probability of (i) is P (Hjs). As to the
probability of (ii): Lemmas B2 and B3 give that xk = L, xAk+1 = H; and xi = H. In

addition, Lemma B3 gives that players k + 2A to i � 1A follow their signals, which implies
that the probability (dAk+2; : : : ; d

A
i�1) 2 Db

i�k�2 is �
i�k�3

2 . Thus, the probability of (ii) is

P (Ljs)P (Hjs)2�
i�k�3

2 . As to the probability of (iii): We have xk = L and xAk+1 = H. Since

(dAk+2; : : : ; d
A
i�1) 2 Da

i�k�2, there is an odd � < i� 1 such that (dAk+2; : : : ; dA� ) is balanced and
dA� = dA�+1 = � � � = dAi�1 = a. By Lemma B3, players k + 2A to � + 1A follow their own

signal, while players �A + 2 to i � 1A are in a cascade on a. This implies the probability
(dAk+2; : : : ; d

A
i�1) 2 Da

i�k�2 is P (Hjs)2�(i � k � 3) (because there are i�k�3
2

places to put �).

Thus, the probability of (iii) is P (Ljs)P (Hjs)3�(i � k � 3). Summing the probabilities of
(i), (ii), and (iii) gives the cell.
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Plugging the values from Table B3 into the expression for g2 and simplifying gives

g2(i; k) = (2p� 1)(
�

2
�(k � 1))2

8><>:1 if i = k or i = k + 1

(1 + �
2
�(i� k)) if i � k + 2:

Thus, the display equation of the proposition is true. �

Proof of Proposition 6. In a basic cascade, the players�asymptotic payo¤ is

lim
i!1

wB(i) = lim
i!1

2p� 1
2

�(i) =
2p� 1
2(1� �) :

In an interacting cascade, the payo¤ of the common player is

w(k; k) =
2p� 1
2(1� �)

�
1� �k + 1

2(1� �) [�(1� �
k�1
2 )]2

�
:

Hence, w(k; k) � limi!1w
B(i) if and only if

1� �k + 1

2(1� �) [�(1� �
k�1
2 )]2 � 1;

which simpli�es to

(1� �)(1� 3�k�2) + ��2(� 3
2 � � k

2 )2 � 0:

Since p 2 (1=2; 1); then � = 2p(1�p) 2 (0; 1=2). If k � 5; then 1�3�k�2 > 0 and � 3
2�� k

2 > 0,

and hence w(k; k) > limi!1w
B(i). While if k = 3; then �

3
2 � � k

2 = 0 and 1 � 3� � 0 if

� � 1=3 (i.e., p � 1
6

p
3+ 1

2
), and hence w(k; k) � limi!1w

B(i). Since wB(j) < limi!1w
B(i)

for each j, then w(k; k) > wB(i) for all i if either k � 5 or k = 3 and p � 1
6

p
3 + 1

2
.

If k = 3 and p < 1
6

p
3 + 1

2
then w(k; k) < limi!1w

B(i), so there is some i such that

w(k; k) < wB(i). �

Proof of Proposition 7. We prove the result by establishing that the gain from moving

the common player exceeds the loss when p is large. Since players in positions 1, : : :, k � 3
in both groups are una¤ected by the move, we only need to show that the (i) the minimum

gain for players k � 2A, k � 1A, k � 2B, and k � 1B exceeds the (ii) maximum loss for the

common player and players k+1A, k+1B, : : :, NA, and NB. With this in mind, we proceed

by constructing a (i�) lower bound on the gain and (ii�) an upper bound on the loss. We then

establish that (i�) is strictly greater than (ii�) when p is su¢ ciently close to 1. The desired

result follows.
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First, we compute a lower bound on the gain for players k � 2A, k � 1A, k � 2B, and
k � 1B. Table B4 computes the gain to each of these players.

Player Gain

k � 2 w(k � 1; k � 2)� w(k � 2; k) = 2p�1
2
�
k�1
2 �(k � 3) + (2p� 1)(�(k � 3)�

2
)2

k � 1 w(k; k � 2)� w(k � 1; k) = 2p�1
2
�
k�1
2 �(k � 3) + (2p� 1)(�(k � 3)�

2
)2(1 + �

2
)

Table B4: Gain to Players k � 2 and k � 1

It is clear from the table that the total gain to all four players is at least

G(p) = 2(2p� 1)�
k�1
2 �(k � 3):

Second, we compute an upper bound on the loss for the common player and subsequent

players in both groups. Table B5 computes the loss to each of these players.

Player Loss

Common Player w(k; k)� w(k � 2; k � 2) =
2p�1
2
�k�2�(4) + (2p� 1)(�

2
)2(�(k � 1)2 � �(k � 3)2)

k + 1 w(k + 1; k)� w(k + 1; k � 2) =
2p�1
2
�k�2�(4) + (2p� 1)(�

2
)2(�(k � 1)2 � �(k � 3)2(1 + �

2
))

i � k + 2 and i odd w(i; k)� w(i; k � 2) = 2p�1
2
�k�2�(4) + (2p� 1)(�

2
)2[

�(k � 1)2(1 + �
2
�(i� k))� �(k � 3)2(1 + �

2
�(i� k + 2))]

i � k + 2 and i even w(i; k)� w(i; k � 2) = w(i� 1; k)� w(i� 1; k � 2)

Table B5: Loss to Common Player and Subsequent Players

A bit of algebra shows that every row of Table B5 is less than or equal

T (p) =
2p� 1
2

�k�2�(4) + 2(2p� 1)(�
2
)2(�(k � 1)2 � �(k � 3)2):

Consequently, the loss to the common player and all subsequent players is at most

L(p) = 2(N � k + 1
2
)T (p):
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We now establish that G(p) � L(p) for p su¢ ciently close to 1, this then implies that the
move of the common player is surplus improving. To do this, consider the related inequality

2(1� �
k�3
2 )| {z }

LHS(p)

� (N � k + 1
2
)�

k�3
2 (1� �2)| {z }

RHS1(p)

+(N � k + 1
2
)(1� �)� 5

2 (
�(k � 1)2

�k=2
� �(k � 3)

2

�k=2
)| {z }

RHS2(p)

:

(2)

Observe that G(p) = 2p�1
(1��)�

k�1
2 LHS(p) and that L(p) = 2p�1

1�� �
k�1
2 (RHS1(p) + RHS2(p)):

Notice that (i) LHS(1) = 2, (ii) RHS1(1) = 0, and (iii) RHS2(p) = 0. The �rst and second

equalities are obvious. The third equality follows from the fact that (1 � �)� 5
2 (�(k�1)

2

�k=2
�

�(k�3)2
�k=2

) = 2� � �
k�1
2 (1 + �), which equals 0 when p = 1 since k > 1. It follows that (2) is

true with strict inequality when p = 1. Since both sides of (2) are continuous in p, there is

a pk, with 1
2
< pk < 1, such that (2) is true for all p � pk. At every p 2 [pk; 1), we have that

2p�1
1�� �

k�1
2 > 0. Multiplying both sides of (2) by 2p�1

1�� �
k�1
2 establishes that that G(p) � L(p),

as desired. �
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8 Appendix C: Online Supplement

In this appendix, we prove Lemmas B1 to B4. First, we de�ne balanced and unbalanced

signal pro�les and establish several preliminary lemmas.

A signal pro�le �xi = (x1; : : : ; xi) is balanced if, for every odd integer j < i, we have

that xj 6= xj+1, and is unbalanced otherwise. Equivalently, a signal pro�le is balanced if

the running di¤erence between the total number of H signals and the total number of L

signals never exceeds 1. The null signal pro�le and every singleton signal pro�le are trivially

balanced.

If a signal pro�le �xi is unbalanced then there is an odd integer j < i such that xj = xj+1.

Let � denote the smallest such j. We say that an unbalance signal pro�le is unbalanced on

H if x�+1 = H and is unbalanced on L if x�+1 = L. As Lemmas C2 and C3 will make clear,

� + 1 is the last player who in equilibrium will follow her own signal, i.e., chooses a given

signal H and chooses L given signal L.10

Let Xi = fH;Lgi. Let Xb
i denote the set of balanced i-length signal pro�les, let X

H
i

denote the set of i-length signal pro�les that are unbalanced on H, and let XL
i denote the

set of i-length signal pro�les that are unbalanced on L. The sets Xb
i , X

H
i , and X

L
i partition

Xi.

For T � Xi, we write

Prob(T js) = ��xi2TP (x1js) � � �P (xijs)

for the probability the realized signal pro�le is in T given state s.

Lemma C1. For i � 2, let �xi be a signal pro�le. Then, for s 2 fH;Lg,
10Observe that if a signal pro�le is unbalanced on H (L), then the elements of the pro�le after j may be

arbitrary. In contrast, the elements of a history that is unbalanced on a (r) are not arbitrary after j.
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Prob(Xb
i js) =

8><>:�
i
2 for i even

�
i�1
2 for i odd,

Prob(XH
i js) =

8><>:P (Hjs)
2�(i) for i even

P (Hjs)2�(i� 1) for i odd,

Prob(XL
i js) =

8><>:P (Ljs)
2�(i) for i even

P (Ljs)2�(i� 1) for i odd.

Proof. The proof is a simple computation and is omitted. �

Proof of Lemma B1. By induction. Let (��; ��) be an equilibrium. Consider player 1

with signal x1. Her belief is

��i (
�d0; x1) =

P (H)P (x1jH)P��( �d0jH)P
s2fH;Lg P (s)P (x1js)P��( �d0js)

=

8<: p if x1 = H

1� p if x1 = L:

Since p > 1=2, sequential rationality implies ��1( �d0; H) = a and �
�
1(
�d0; L) = r. Since �d0 2 Db

0,

Lemma B.1 holds for i = 1.

Assume Lemma B.1 holds for players 1 to i� 1. We show it holds for i. Let �di�1 be the
history observed by i. By the induction hypothesis, �di�1 2 Da

i�1 [Db
i�1 [Dr

i�1, so there are

three cases.

Case (i): If �di�1 2 Db
i�1 then the induction hypothesis implies that each player prior to i

has followed her own signal. Thus

P��(d1; : : : ; di�1js) =
Yi�1

j=1
P (xjjs) where xj =

8<: H if dj = a

L if dj = r.

If i is odd then P��(d1; : : : ; di�1js) = (�=2)
i�1
2 , and if i is even then P��(d1; : : : ; di�1js) =

(�=2)
i�2
2 P (xi�1js). Thus player i�s belief given signal xi is

��i (d1; : : : ; di�1; xi) =
P (H)P (xijH)P��(d1; : : : ; di�1jH)P
s2fH;Lg P (s)P (xijs)P��(d1; : : : ; di�1js)

:
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If i is odd, then

��i (d1; : : : ; di�1; xi) =
P (H)P (xijH)(�=2)

i�1
2P

s2fH;Lg P (s)P (xijs)(�=2)
i�1
2

=
P (H)P (xijH)P

s2fH;Lg P (s)P (xijs)

=

8<: p if xi = H

1� p if xi = L:

Thus sequential rationality implies ��i ( �di�1; H) = a and �
�
i (
�di�1; L) = r.

If i is even, then

��i (d1; : : : ; di�1; xi) =
P (H)P (xijH)(�=2)

i�2
2 P (xi�1jH)P

s2fH;Lg P (s)P (xijs)(�=2)
i�2
2 P (xi�1js)

=
P (H)P (xijH)P (xi�1jH)P
s2fH;Lg P (s)P (xijs)P (xi�1js)

:

If (xi�1; xi) = (L;H) or (H;H) then it is readily veri�ed that �
�
i (d1; : : : ; di�1; xi) � 1=2; while

if (xi�1; xi) = (H;L) or (L;L) then ��i (d1; : : : ; di�1; xi) � 1=2. Thus sequential rationality

implies ��i ( �di�1; H) = a and �
�
i (
�di�1; L) = r.

Case (ii): Suppose �di�1 2 Da
i�1. There is an odd integer j < i�1 such that dj = dj+1 = a.

Let � denote the smallest such j. Note that (d1; : : : ; d�) is balanced. By the induction

hypothesis (a) players 1 through �+1 follow their own signals and (b) players �+2 through

i� 1 take the same action as player � + 1 regardless of their own signals. Thus

P��(d1; : : : ; di�1js) =
Y�+1

j=1
P (xjjs) where xj =

8<: H if dj = a

L if dj = r.

Since (d1; : : : ; d�) is balanced and d� = d�+1 = a then

P��(d1; : : : ; di�1js) = (�=2)
��1
2 P (x�js)P (x�+1js) = (�=2)

��1
2 P (Hjs)2:

Hence

��i (d1; : : : ; di�1; xi) =
P (H)P (xijH)(�=2)

��1
2 P (HjH)2P

s2fH;Lg P (s)P (xijs)(�=2)
��1
2 P (Hjs)2

=
P (H)P (xijH)P (HjH)2P
s2fH;Lg P (s)P (xijs)P (Hjs)2

:

It is readily veri�ed that ��i (d1; : : : ; di�1; xi) > 1=2 for xi 2 fH;Lg. Thus sequential ratio-
nality implies ��i ( �di�1; xi) = a.

Case (iii): When �di�1 2 Dr
i�1; a symmetric argument to Case (ii) gives that i chooses r.

Observe that if player i observes a history �di�1 that�s not given by a row of Table B1,

then �di�1 is not an equilibrium path history, so i�s belief and strategy are arbitrary. �
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Proof of Lemma B4. This result is an immediate corollary of Lemmas B1 and C1. �

Proof of Lemma B2. Let ( �dAk�1; �d
B
k�1) 2 (Db

k�1 [ Da
k�1 [ Dr

k�1)
2. If �dgk�1 2 Db

k�1 then

P��( �d
g
k�1js) = �

k�1
2 . If �dgk�1 2 Da

k�1 then P��( �d
g
k�1js) = (�=2)

��1
2 p(Hjs)2, and if �dgk�1 2 Dr

k�1

then P��( �d
g
k�1js) = (�=2)

��1
2 p(Ljs)2, where � denotes the smallest odd integer j < i� 1 such

that dj = dj+1 = a (= r). Thus, k�s belief is

��k(
�dAk�1;

�dBk�1; xk) =
P (H)P (xkjH)P��( �dAk�1jH)P��( �dBk�1jH)P
s2fH;Lg P (s)P (xkjs)P��( �dAk�1js)P��( �dBk�1js)

:

Using this expression, the previous facts, and a bit of algebra, we get Table C1, a description

of when ��k(�) is greater than, less than, or equal to 1=2:

xk

�dAk�1
�dBk�1 H L

Da
k�1 ��k >

1
2
��k >

1
2

Da
k�1 Db

k�1 ��k >
1
2
��k >

1
2

Dr
k�1 ��k >

1
2
��k <

1
2

Da
k�1 ��k >

1
2
��k >

1
2

Db
k�1 Db

k�1 ��k >
1
2
��k <

1
2

Dr
k�1 ��k <

1
2
��k <

1
2

Da
k�1 ��k >

1
2
��k <

1
2

Dr
k�1 Db

k�1 ��k <
1
2
��k <

1
2

Dr
k�1 ��k <

1
2
��k <

1
2

Table C1: The Beliefs of the Common Player

Table B1(b) records the sequentially rational action for each cell of Table C1.

If ( �dAk�1; �d
B
k�1) =2 (Db

k�1 [ Da
k�1 [ Dr

k�1)
2, then ( �dAk�1; �d

B
k�1) is not an equilibrium history

by Lemma B1. The common player�s belief and strategy are arbitrary. �

After the Common Player

We prove each part of Lemma B3 separately. Player k+ 1 observes a history in fDa
k�1 [

Db
k�1 [Dr

k�1g� fa; rg by Lemmas B1 and B2. To compute her belief, we need the following
lemma that gives the equilibrium probability distribution over this set.
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Lemma C2. Let g 2 fA;Bg and ( �dgk�1; dk) be a history with �d
g
k�1 2 Da

k�1 [Db
k�1 [Dr

k�1.

Then P g��( �d
g
k�1; dkjs) is given by Table C2 for s 2 fH;Lg.

P g��(
�dgk�1; dkjs)

�dgk�1 dk = a dk = r

Da
k�1 P g��(

�dgk�1js)(1� P (Ljs)3�(k � 1)) P g��(
�dgk�1js)P (Ljs)3�(k � 1)

Db
k�1

P g��(
�dgk�1js)P (Hjs)�

k�1
2

+P g��(
�dgk�1js)P (Hjs)2�(k � 1)

P g��(
�dgk�1js)P (Ljs)�

k�1
2

+P g��(
�dgk�1js)P (Ljs)2�(k � 1)

Dr
k�1 P g��(

�dgk�1js)P (Hjs)3�(k � 1) P g��(
�dgk�1js)(1� P (Hjs)3�(k � 1))

Table C2: Value of P g��( �d
g
k�1; dkjs)

Proof. This lemma is computational. Without loss let g = A. Given ( �dAk�1; dk), Lemma B2

gives the possible pairings ( �dBk�1; xk) for which player k chooses dk. Given these, we apply

Lemma B4 to compute PA��( �d
A
k�1; dkjs). We illustrate the calculation of the top-right cell of

Table C2, i.e., when �dAk�1 2 Da
k�1 and dk = r. The common player then chooses r when

�dBk�1 2 Dr
k�1 and xk = L by Lemma B2. Hence,

PA��(
�dAk�1; rjs) = PA��(

�dAk�1js)P (Ljs)Prob(Dr
k�1js)

= PA��(
�dAk�1js)P (Ljs)3�(k � 1);

where the second equality follows from Lemma B4. �

Proof of Lemma B3.1. Without loss we consider player k + 1A. Let ( �dAk�1; dk) =

(dA1 ; : : : ; d
A
k�1; dk) 2 fDa

k�1 [ Db
k�1 [ Dr

k�1g � fa; rg. If �dAk�1 2 Da
k�1 or �d

A
k�1 2 Dr

k�1, then

there is an odd integer j < k � 1 such that dAj = dAj+1. Let � denote the smallest such j.

Note that (dA1 ; : : : ; d
A
� ) is balanced. If �d

A
k�1 2 Db

k�1; let � = k � 2.
We proceed by deriving the belief of player k + 1A. Recall that

�A�k+1(
�dAk�1; dk; x

A
k+1) =

P (H)P (xAk+1jH)PA��( �dAk�1; dkjH)P
s2fH;Lg P (s)P (x

A
k+1js)PA��( �dAk�1; dkjs)

:

Lemma B1 implies that players 1A to � + 1A follow their own signals, while players � + 2A

to k � 1A are in a cascade. Thus, xAi = H if dAi = a and xAi = L if dAi = r for all

i 2 f1; : : : ; �+1g. Hence, PA��( �dAk�1js) = P (xA� js)P (xA�+1js)(�=2)
��1
2 . Thus we use Lemma C2
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to write the following table that describes when the belief of player k + 1A is greater than,

equal to, or less than 1
2
.

�g�k+1(
�dgk; x

g
k+1)

�dgk�1 dk H L

Da
k�1 a �A�k+1 >

1
2
�A�k+1 >

1
2

r �A�k+1 =
1
2
�A�k+1 <

1
2

Db
k�1 a �A�k+1 >

1
2
�A�k+1 >

1
2

r �A�k+1 <
1
2
�A�k+1 <

1
2

Dr
k�1 a �A�k+1 >

1
2
�A�k+1 =

1
2

r �A�k+1 <
1
2
�A�k+1 <

1
2

Table C3: When �A�k+1(�) is > , = , and < 1=2

We illustrate the calculation of the top-left cell of Table C3, i.e., when that �dAk�1 2 Da
k�1,

dk = a, and xAk+1 = H. Then, xA� = xA�+1 = H, so PA��( �d
A
k�1js) = P (Hjs)2(�=2) ��12 , which

implies that

PA��(
�dAk�1; dkjs) = P (Hjs)2(�=2)

��1
2 (1� P (Ljs)3�(k � 1));

by Lemma C2. Hence,

�A�k�1(
�dAk�1; dk; H) =

p3(1� (1� p)3�(k � 1))
p3(1� (1� p)3�(k � 1)) + (1� p)3(1� p3�(k � 1)) :

Since p > 1
2
, then (i) p3 > (1 � p)3 and (ii) 1 � (1 � p)3�(k � 1) > 1 � p3�(k � 1). Thus,

�A�k�1(
�dAk�1; H) >

1
2
, as shown in Table C3.

For each cell in Table C3, there is a unique sequentially rational action, which we record

in Table B2(a).

Observe that if player k + 1A observes a history �dAk that�s not given by a row of Table

B2(a), then �dAk is not an equilibrium path history, so the belief and strategy of k + 1A are

arbitrary. �

Proof of Lemma B3.2. Without loss we consider player k + 2A. By Lemmas B1, B2,

and B3.1, any equilibrium path history ( �dAk�1; dk; d
A
k+1) belongs to one of the rows in Table

B2(b). Let ( �dAk�1; dk; d
A
k+1) = (dA1 ; : : : ; d

A
k�1; dk; d

A
k+1) be such a history. If �d

A
k�1 2 Da

k�1 or

�dAk�1 2 Dr
k�1, then there is an odd integer j < k � 1 such that dAj = dAj+1. Let � denote the

smallest such j. Note that (dA1 ; : : : ; d
A
� ) is balanced. If �d

A
k�1 2 Db

k�1; let � = k � 2.
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We proceed by deriving the belief of player k + 2A. Recall that

�A�k+2(
�dAk�1; dk; d

A
k+1; x

A
k+2) =

P (H)P (xAk+2jH)PA��( �dAk�1; dk; dAk+1jH)P
s2fH;Lg P (s)P (x

A
k+2js)PA��( �dAk�1; dk; dAk+1js)

=
P (H)P (xAk+2jH)PA��( �dAk�1; dkjH)PA��(dAk+1jH; �dAk�1; dk)P
s2fH;Lg P (s)P (x

A
k+2js)PA��( �dAk�1; dkjs)PA��(dAk+1js; �dAk�1; dk)

:

Lemma B1 implies that players 1A to �+1A follow their own signals, while players �+2A to

k�1A are in a cascade. Thus, xAi = H if dAi = a and xAi = L if dAi = r for all i 2 f1; : : : ; �+1g.
Hence, PA��( �d

A
k�1js) = P (xA� js)P (xA�+1js)(�=2)

��1
2 . We use this expression, Lemma C2 and

Lemma B3.1 to write the following table that describes when the belief of player k + 2A is

greater than, equal to, or less than 1
2
.

�A�k+2(�)
�dgk�1 dk dgk+1 xAk+2 = H xAk+2 = L

a a �A�k+2 >
1
2

�A�k+2 >
1
2

Da
k�1 r a �A�k+2 >

1
2

�A�k+2 <
1
2

r r �A�k+2 <
1
2

�A�k+2 <
1
2

Db
k�1 a a �A�k+2 >

1
2

�A�k+2 >
1
2

r r �A�k+2 <
1
2

�A�k+2 <
1
2

a a �A�k+2 >
1
2

�A�k+2 >
1
2

Dr
k�1 a r �A�k+2 >

1
2

�A�k+2 <
1
2

r r �A�k+2 <
1
2

�A�k+2 <
1
2

Table C4: When �A�k+2(�) is > , = , and < 1=2

We illustrate the calculation of the left most cell of the second row of Table C4, i.e., when

�dAk�1 2 Da
k�1, dk = r, d

A
k+1 = a, and x

A
k+2 = H. Then x

A
� = x

A
�+1 = H and Lemma C2 implies

PA��(
�dAk�1; dkjs) = P (Hjs)2(�=2)

��1
2 P (Ljs)3�(k � 1): (3)

Since k + 1A follows her signal by Lemma B3.1, xAk+1 = H: Thus

�A�k+2(
�dAk+1; r; a;H) =

p4(1� p)3�(k � 1)
p4(1� p)3�(k � 1) + p3(1� p)4�(k � 1) = p > 1=2:

For each cell in Table C4, there is a unique sequentially rational action, which we record in

Table B2(b).
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Observe that if player k + 2A observes a history �dAk+2 that�s not given by a row of Table

B2(b), then �dAk+2 is not an equilibrium path history, so the belief and strategy of k + 1A are

arbitrary. �

Proof of Lemma B3.3.Without loss we focus on group A. We proceed in two steps. First,

we show that every player iA > k + 2A is in a cascade on the action of player k + 2A when

k + 2A is herself in a cascade. Second, we show that if player k + 2A follows her own signal

then the behavior of subsequent players is given by an analog of Lemma B.1, to be made

precise below. We conclude by using these two facts to establish Table B2(c).

We use an inductive argument to show that if player k + 2A is in a cascade then every

subsequent player is also in a cascade on the same action. Lemma B3.2 gives that player

k + 2A is in a cascade on a if the history she observes ( �dAk�1; dk; d
A
k+1) is such that

1. �dAk�1 2 Da
k�1, dk = a, and d

A
k+1 = a,

2. �dAk�1 2 Db
k�1, dk = a, and d

A
k+1 = a, or

3. �dAk�1 2 Dr
k�1, dk = a, and d

A
k+1 = a.

Likewise, player k+2A is in a cascade on r if the history she observes ( �dAk�1; dk; d
A
k+1) is such

that

4. �dAk�1 2 Da
k�1, dk = r, and d

A
k+1 = r,

5. �dAk�1 2 Db
k�1, dk = r, and d

A
k+1 = r, or

6. �dAk�1 2 Dr
k�1, dk = r, and d

A
k+1 = r.

Consider player k+3A: Since player k+2A is in a cascade for these histories, player k+3A

learns nothing from her equilibrium action. Thus, the beliefs of players k + 2A and k + 3A

are the same, provided they each get the same signal realization, i.e., for each x 2 fH;Lg,

�A�k+2(
�dAk�1; dk; d

A
k+1; x) = �

A�
k+3(

�dAk�1; dk; d
A
k+1; d

A
k+2; x);

where dAk+1 = �
A�
k+1(

�dAk�1; dk; d
A
k+1; x). Thus, the equilibrium mapping from signals to actions

is the same for players k+ 2A and k+ 3A. Since k+ 2A is in a cascade, player k+ 3A is also

in a cascade on the same action.
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By the same reasoning, player k + 4A learns nothing from the equilibrium actions of

players k+2A or k+3A, and has the same equilibrium belief and takes the same equilibrium

action as these players. By the same logic, every subsequent player is in a cascade on the

action of player k + 2A.

We now show that when player k + 2A follows her own signal, i.e., when

1. �dAk�1 2 Da
k�1, dk = r, and d

A
k+1 = a, or

2. �dAk�1 2 Dr
k�1, dk = a, and d

A
k+1 = r,

then the behavior of every subsequent player is given by the following table, which is analo-

gous to Lemma B1.

�A�i (�; dAk+2; : : : ; dAi�1; xAi )
(dAk+2; : : : ; d

A
i�1) H L

Da
i�k�2 a a

Db
i�k�2 a r

Dr
i�k�2 r r

Table entries in bold indicate when a player follows her signal.

Table C5: Equilibrium Play of Players iA > k + 2A When k + 2A Follows Her Signal

Table C5 gives that player iA�s equilibrium strategy depends only on the decisions of players

k + 2A through i� 1A and her own signal.
We begin by noting that

PA��(
�dAk�1; dk; d

A
k+1jH) = PA��( �dAk�1; dk; dAk+1jL): (4)

For concreteness, suppose case (1). By equation (3) of the Proof of Lemma B2.2, we have

that

PA��(
�dAk�1; dk; d

A
k+1js) = P (Hjs)3(�=2)

��1
2 P (Ljs)3�(k � 1):

Since P (Hjs)3P (Ljs)3 = p3(1� p)3 for all states s and since � and � are independent of s,
equation (4) holds; the argument for case (2) is analogous.
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Consider player k + 3A. Her belief is

�A�k+3(
�dAk�1; dk; d

A
k+1; d

A
k+2; x

A
k+3)

=
P (H)P (xAk+3jH)PA��( �dAk�1; dk; dAk+1jH)PA��(dAk+2jH; �dAk�1; dk; dAk+1)P
s2fH;Lg P (s)P (x

A
k+3js)PA��( �dAk�1; dk; dAk+1js)PA��(dAk+2js; �dAk�1; dk; dAk+1)

=
P (H)P (xAk+3jH)PA��(dAk+2jH; �dAk�1; dk; dAk+1)P
s2fH;Lg P (s)P (x

A
k+3js)PA��(dAk+2js; �dAk�1; dk; dAk+1)

;

where the third line follows from equation (4). Lemma B3.2 gives that player k+2A follows

her own signal, so PA��(d
A
k+2jH; �dAk�1; dk; dAk+1) = P (xAk+2js) for each state s, where xAk+2 = H

if dAk+2 = a and x
A
k+2 = L if d

A
k+2 = r. Thus,

�A�k+3(
�dAk�1; dk; d

A
k+1; d

A
k+2; x

A
k+3) =

P (H)P (xAk+3jH)P (xAk+2jH)P
s2fH;Lg P (s)P (x

A
k+3js)P (xAk+2js)

:

Since (i) dAk+2 2 Db
k+3�k�2 and, as in the Proof of Lemma B1, (ii) �

A�
k+3(�; H) � 1=2 and

�A�k+3(�; L) � 1=2 for all dAk+2, Table C5 describes the equilibrium action of player k + 3A.

Suppose Table C5 describes the equilibrium behavior of players k + 3A to i � 1A. We
show that Table C5 also describes the behavior of player iA. Write

PA��(
�dAk�1; dk; d

A
k+1; : : : ; d

A
i�1js) = PA��( �dAk�1; dk; dAk+1js)PA��(dAk+2; : : : ; dAi�1js; �dAk�1; dk; dAk+1):

There are three cases by the induction hypothesis, (i) (dAk+2; : : : ; d
A
i�1) 2 Db

i�k�2,

(ii) (dAk+2; : : : ; d
A
i�1) 2 Da

i�k�2, and (iii) (d
A
k+2; : : : ; d

A
i�1) 2 Da

i�k�2.

Case (i): If (dAk+2; : : : ; d
A
i�1) 2 Db

i�k�2, then the induction hypothesis implies that each

player k + 2A to i� 1A has followed her own signal. Thus,

PA��(d
A
k+2; : : : ; d

A
i�1js; �dAk�1; dk; dAk+1) =

Yi�1

j=k+2
P (xAj js) where xAj =

8<: H if dAj = a

L if dAj = r.

If i is odd then PA��(d
A
k+2; : : : ; d

A
i�1js; �dAk�1; dk; dAk+1) = (�=2)

i�k�2
2 ; and if i is even then

PA��(d
A
k+2; : : : ; d

A
i�1js; �dAk�1; dk; dAk+1) = (�=2)

i�k�3
2 P (xAi�1js). Thus player i�s belief given signal
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xAi is

�A�i (
�dAk�1; dk; d

A
k+1; d

A
k+2; : : : ; d

A
i�1; x

A
i )

=
P (H)P (xAi jH)PA��( �dAk�1; dk; dAk+1; : : : ; dAi�1jH)P
s2fH;Lg P (s)P (x

A
i js)PA��( �dAk�1; dk; dAk+1; : : : ; dAi�1js)

=
P (H)P (xAi jH)PA��(dAk+2; : : : ; dAi�1jH; �dAk�1; dk; dAk+1)P
s2fH;Lg P (s)P (x

A
i js)PA��(dAk+2; : : : ; dAi�1js; �dAk�1; dk; dAk+1)

=

8<:
P (H)P (xAi jH)P

s2fH;Lg P (s)P (xijs)
if i is odd.

P (H)P (xAi jH)P (xAi�1jH)P
s2fH;Lg P (s)P (x

A
i js)P (xAi�1js)

if i is even.

As in the proof of Lemma B1, �A�i (�; H) � 1=2 for all dAi�1 and ��i (�; L) � 1=2 for all �dAi�1, so
player iA follows her own signal as in Table C5.

Case (ii): If (dAk+2; : : : ; d
A
i�1) 2 Da

i�k�2, then there is an odd integer j between k + 2 and

i� 1 such that dAj = dAj+1 = a. Let � denote the smallest such j. Note that (dAk+2; : : : ; dA� ) is
balanced. By the induction hypothesis (a) players k + 2A through � + 1A follow their own

signals and (b) players �+2A through i�1A take the same action as player �+1A regardless
of their own signals. Thus

PA��(d
A
k+2; : : : ; d

A
i�1js; �dAk�1; dk; dAk+1) =

Y�+1

j=k+2
P (xAj js) where xAj =

8<: H if dAj = a

L if dAj = r.

Since (dAk+2; : : : ; d
A
� ) is balanced and d

A
� = d

A
�+1 = a then

PA��(d
A
k+2; : : : ; d

A
i�1js; �dAk�1; dk; dAk+1) = (�=2)

��k�2
2 P (xA� js)P (xA�+1js) = (�=2)

��k�2
2 P (Hjs)2:

Hence

�A�i (
�dAk�1; dk; d

A
k+1; d

A
k+2; : : : ; d

A
i�1; x

A
i ) =

P (H)P (xAi jH)P (HjH)2P
s2fH;Lg P (s)P (x

A
i js)P (Hjs)2

:

It is readily veri�ed that �A�i (�; xi) > 1=2 for xi 2 fH;Lg. Thus sequential rationality implies
��i (�; xi) = a, as in Table C5.
Case (iii): The proof is symmetric to Case (ii) and therefore omitted.

Table B2(c) follows directly from the two results we just established. Lemmas B1, B2,

and B3.1 give that player iA observes, in equilibrium, a history

( �dAk�1; dk; d
A
k+1; d

A
k+2; : : : ; d

A
i�1) where ( �d

A
k�1; dk; d

A
k+1) is from a row in Table B2(c). If ( �d

A
k�1; dk; d

A
k+1)

is such that player k + 2A is in a cascade, then our �rst result pins down the equilibrium
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decisions of all subsequent player. Thus, we obtain rows 1, 5, 6, 7, 8, and 12 of Table B2(c).

While if ( �dAk�1; dk; d
A
k+1) is such that player k + 2

A is not in a cascade, then Table C5 pins

down the equilibrium decisions of all subsequent players. Thus, we obtain rows 2, 3, 4, 9, 10,

and 11 of Table B2(c).

Observe that if player iA observes a history �dAi�1 that�s not given by a row of Table B2(b),

then �dAi�1 is not an equilibrium path history, so the belief and strategy of i
A are arbitrary. �
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