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Abstract

We investigate the role of manipulation in a model of opinion

formation. Agents repeatedly communicate with their neighbors in

the social network, can exert e↵ort to manipulate the trust of oth-

ers, and update their opinions about some common issue by taking

weighted averages of neighbors’ opinions. The incentives to manip-

ulate are given by the agents’ preferences. We show that manipula-

tion can modify the trust structure and lead to a connected society.

Manipulation fosters opinion leadership, but the manipulated agent

may even gain influence on the long-run opinions. Finally, we in-

vestigate the tension between information aggregation and spread

of misinformation.
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1 Introduction

Individuals often rely on social connections (friends, neighbors and cowork-

ers as well as political actors and news sources) to form beliefs or opinions

on various economic, political or social issues. Every day individuals make

decisions on the basis of these beliefs. For instance, when an individual

goes to the polls, her choice to vote for one of the candidates is influenced

by her friends and peers, her distant and close family members, and some

leaders that she listens to and respects. At the same time, the support of

others is crucial to enforce interests in society. In politics, majorities are

needed to pass laws and in companies, decisions might be taken by a hi-

erarchical superior. It is therefore advantageous for individuals to increase

their influence on others and to manipulate the way others form their be-

liefs. This behavior is often referred to as lobbying and widely observed in

society, especially in politics.1 Hence, it is important to understand how

beliefs and behaviors evolve over time when individuals can manipulate the

trust of others. Can manipulation enable a segregated society to reach a

consensus about some issue of broad interest? How long does it take for

beliefs to reach consensus when agents can manipulate others? Can ma-

nipulation lead a society of agents who communicate and update näıvely

to more e�cient information aggregation?

We consider a model of opinion formation where agents repeatedly com-

municate with their neighbors in the social network, can exert some e↵ort to

manipulate the trust of others, and update their opinions taking weighted

averages of neighbors’ opinions. At each period, first one agent is selected

randomly and can exert e↵ort to manipulate the social trust of an agent

of her choice. If she decides to provide some costly e↵ort to manipulate

another agent, then the manipulated agent weights relatively more the be-

lief of the agent who manipulated her when updating her beliefs. Second,

all agents communicate with their neighbors and update their beliefs using

the DeGroot updating rule, see DeGroot (1974). This updating process is

simple: using her (possibly manipulated) weights, an agent’s new belief is

the weighted average of her neighbors’ beliefs (and possibly her own belief)

1See Gullberg (2008) for lobbying on climate policy in the European Union, and
Austen-Smith and Wright (1994) for lobbying on US Supreme Court nominations.
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from the previous period. When agents have no incentives to manipulate

each other, the model coincides with the classical DeGroot model of opinion

formation.

The DeGroot updating rule assumes that agents are boundedly ratio-

nal, failing to adjust correctly for repetitions and dependencies in informa-

tion that they hear multiple times. Since social networks are often fairly

complex, it seems reasonable to use an approach where agents fail to up-

date beliefs correctly.2 Chandrasekhar et al. (2012) provide evidence from a

framed field experiment that DeGroot “rule of thumb” models best describe

features of empirical social learning. They run a unique lab experiment in

the field across 19 villages in rural Karnataka, India, to discriminate be-

tween the two leading classes of social learning models – Bayesian learning

models versus DeGroot models.3 They find evidence that the DeGroot

model better explains the data than the Bayesian learning model at the

network level.4 At the individual level, they find that the DeGroot model

performs much better than Bayesian learning in explaining the actions of

an individual given a history of play.5

Manipulation is modeled as a communicative or interactional practice,

where the manipulating agent exercises some control over the manipu-

lated agent against her will. In this sense, manipulation is illegitimate,

see Van Dijk (2006). Notice that manipulating the trust of other agents

(instead of the opinions directly) can be seen as an attempt to influence

their opinions in the medium- or even long-run since they will continue

to use these manipulated weights in the future.6 Agents only engage in

2Choi et al. (2012) report an experimental investigation of learning in three-person
networks and find that already in simple three-person networks people fail to account
for repeated information. They argue that the Quantal Response Equilibrium (QRE)
model can account for the behavior observed in the laboratory in a variety of networks
and informational settings.

3Notice that in order to compare the two concepts, they study DeGroot action mod-
els, i.e., agents take an action after aggregating the actions of their neighbors using the
DeGroot updating rule.

4At the network level (i.e., when the observational unit is the sequence of actions),
the Bayesian learning model explains 62% of the actions taken by individuals while the
degree weighting DeGroot model explains 76% of the actions taken by individuals.

5At the individual level (i.e., when the observational unit is the action of an individual
given a history), both the degree weighting and the uniform DeGroot model largely
outperform Bayesian learning models.

6In our approach, the opinion of the manipulated agent is only a↵ected indirectly
through the manipulated trust weights. Therefore, her opinion continues to be a↵ected
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manipulation if it is worth the e↵ort. They face a trade-o↵ between their

increase in satisfaction with the opinions (and possibly the trust itself) of

the other agents and the cost of manipulation. In examples, we will fre-

quently use a utility model where agents prefer each other agent’s opinion

one step ahead to be as close as possible to their current opinion. This

reflects the idea that the support of others is necessary to enforce inter-

ests. Agents will only engage in manipulation when it brings the opinion

(possibly several steps ahead) of the manipulated agent su�ciently closer

to their current opinion compared to the cost of doing so. In our view, this

constitutes a natural way to model lobbying incentives.

We first show that manipulation can modify the trust structure. If the

society is split up into several disconnected clusters of agents and there are

also some agents outside these clusters, then the latter agents might con-

nect di↵erent clusters by manipulating the agents therein. Such an agent,

previously outside any of these clusters, would not only get influential on

the agents therein, but also serve as a bridge and connect them. As we

show by means of an example, this can lead to a connected society, and

thus, make the society reaching a consensus.

Second, we analyze the long-run beliefs and show that manipulation

fosters opinion leadership in the sense that the manipulating agent always

increases her influence on the long-run beliefs. For the other agents, this

is ambiguous and depends on the social network. Surprisingly, the manip-

ulated agent may thus even gain influence on the long-run opinions. As

a consequence, the expected change of influence on the long-run beliefs is

ambiguous and depends on the agents’ preferences and the social network.

We also show that a definitive trust structure evolves in the society and, if

the satisfaction of agents only depends on the current and future opinions

and not directly on the trust, manipulation will come to an end and they

reach a consensus (under some weak regularity condition). At some point,

opinions become too similar to be manipulated. Furthermore, we discuss

the speed of convergence and note that manipulation can accelerate or slow

down convergence. In particular, in su�ciently homophilic societies, i.e.,

societies where agents tend to trust those agents who are similar to them,

by the manipulation in the following periods, but the extent might be diminished by
further manipulations.
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and where costs of manipulation are rather high compared to its benefits,

manipulation accelerates convergence if it decreases homophily and other-

wise it slows down convergence.

Finally, we investigate the tension between information aggregation and

spread of misinformation. We find that if manipulation is rather costly

and the agents underselling their information gain and those overselling

their information lose overall influence (i.e., influence in terms of their

initial information), then manipulation reduces misinformation and agents

converge jointly to more accurate opinions about some underlying true

state. In particular, this means that an agent for whom manipulation is

cheap can severely harm information aggregation.

There is a large and growing literature on learning in social networks.

Models of social learning either use a Bayesian perspective or exploit some

plausible rule of thumb behavior.7 We consider a model of non-Bayesian

learning over a social network closely related to DeGroot (1974), DeMarzo

et al. (2003), Golub and Jackson (2010) and Acemoglu et al. (2010). De-

Marzo et al. (2003) consider a DeGroot rule of thumb model of opinion

formation and they show that persuasion bias a↵ects the long-run process

of social opinion formation because agents fail to account for the repeti-

tion of information propagating through the network. Golub and Jackson

(2010) study learning in an environment where agents receive independent

noisy signals about the true state and then repeatedly communicate with

each other. They find that all opinions in a large society converge to the

truth if and only if the influence of the most influential agent vanishes as

the society grows.8

Acemoglu et al. (2010) investigate the tension between information ag-

gregation and spread of misinformation. They characterize how the pres-

ence of forceful agents a↵ects information aggregation. Forceful agents

influence the beliefs of the other agents they meet, but do not change their

own opinions. Under the assumption that even forceful agents obtain some

7Acemoglu et al. (2011) develop a model of Bayesian learning over general social
networks, and Acemoglu and Ozdaglar (2011) provide an overview of recent research on
opinion dynamics and learning in social networks.

8Golub and Jackson (2012) examine how the speed of learning and best-response
processes depend on homophily. They find that convergence to a consensus is slowed
down by the presence of homophily but is not influenced by network density.
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information from others, they show that all beliefs converge to a stochastic

consensus. They quantify the extent of misinformation by providing bounds

on the gap between the consensus value and the benchmark without force-

ful agents where there is e�cient information aggregation.9 Friedkin (1991)

studies measures to identify opinion leaders in a model related to DeGroot.

Recently, Büchel et al. (2012) develop a model of opinion formation where

agents may state an opinion that di↵ers from their true opinion because

agents have preferences for conformity. They find that lower conformity

fosters opinion leadership. In addition, the society becomes wiser if agents

who are well informed are less conform, while uninformed agents conform

more with their neighbors.

Furthermore, Watts (2014) studies the influence of social networks on

correct voting. Agents have beliefs about each candidate’s favorite policy

and update their beliefs based on the favorite policies of their neighbors

and on whom the latter support. She finds that political agreement in an

agent’s neighborhood facilitates correct voting, i.e., voting for the candidate

who’s favorite policy is closest to his own favorite policy. Our paper is

also related to the literature on lobbying as costly signaling, e.g., Austen-

Smith and Wright (1994); Esteban and Ray (2006). These papers do not

consider networks and model lobbying as providing one-shot costly signals

to decision-makers in order to influence a policy decision.10

To the best of our knowledge we are the first allowing agents to manipu-

late the trust of others in social networks and we find that the implications

of manipulation are non-negligible for opinion leadership, reaching a con-

sensus, and aggregating dispersed information.

The paper is organized as follows. In Section 2 we introduce the model

of opinion formation. In Section 3 we show how manipulation can change

the trust structure of society. Section 4 looks at the long-run e↵ects of

manipulation. In Section 5 we investigate how manipulation a↵ects the

extent of misinformation in society. Section 6 concludes. The proofs are

9In contrast to the averaging model, Acemoglu et al. (2010) have a model of pairwise
interactions. Without forceful agents, if a pair meets two periods in a row, then in the
second meeting there is no information to exchange and no change in beliefs takes place.

10Notice that we study how (repeated) manipulation and lobbying a↵ect public opin-
ion (and potientially single decision-makers) in the long-run, but do not model explicitly
any decision-making process.
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presented in Appendix A.

2 Model and Notation

Let N = {1, 2, . . . , n} be the set of agents who have to take a deci-

sion on some issue and repeatedly communicate with their neighbors in

the social network. Each agent i 2 N has an initial opinion or belief

xi(0) 2 R about the issue and an initial vector of social trust mi(0) =

(mi1(0),mi2(0), . . . ,min(0)), with 0  mij(0)  1 for all j 2 N and
P

j2N mij(0) = 1, that captures how much attention agent i pays (ini-

tially) to each of the other agents. More precisely, mij(0) is the initial

weight or trust that agent i places on the current belief of agent j in form-

ing her updated belief. For i = j, mii(0) can be interpreted as how much

agent i is confident in her own initial opinion.

At period t 2 N, the agents’ beliefs are represented by the vector x(t) =

(x1(t), x2(t), . . . , xn(t))0 2 Rn and their social trust by the matrix M(t) =

(mij(t))i,j2N .11 First, one agent is chosen (probability 1/n for each agent)

to meet and to have the opportunity to manipulate an agent of her choice.

If agent i 2 N is chosen at t, she can decide which agent j to meet and

furthermore how much e↵ort ↵ � 0 she would like to exert on j. We write

E(t) = (i; j,↵) when agent i is chosen to manipulate at t and decides to

exert e↵ort ↵ on j. The decision of agent i leads to the following updated

trust weights of agent j:

mjk(t+ 1) =

(
mjk(t)/ (1 + ↵) if k 6= i

(mjk(t) + ↵) / (1 + ↵) if k = i

.

The trust of j in i increases with the e↵ort i invests and all trust weights of

j are normalized. Notice that we assume for simplicity that the trust of j

in an agent other than i decreases by the factor 1/(1+↵), i.e., the absolute

decrease in trust is proportional to its level. If i decides not to invest any

e↵ort, the trust matrix does not change. We denote the resulting updated

trust matrix by M(t+ 1) = [M(t)](i; j,↵).

Agent i decides on which agent to meet and on how much e↵ort to exert

11We denote the transpose of a vector (matrix) x by x

0.
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according to her utility function

ui

�
M(t), x(t); j,↵

�
= vi

�
[M(t)](i; j,↵), x(t)

�
� ci(j,↵),

where vi

�
[M(t)](i; j,↵), x(t)

�
represents her satisfaction with the other

agents’ opinions and trust resulting from her decision (j,↵) and ci(j,↵)

represents its cost. We assume that vi is continuous in all arguments and

that for all j 6= i, ci(j,↵) is strictly increasing in ↵ � 0, continuous and

strictly convex in ↵ > 0, and that ci(j, 0) = 0. Note that these conditions

ensure that there is always an optimal level of e↵ort ↵

⇤(j) given agent i

decided to manipulate j.12 Agent i’s optimal choice is then (j⇤,↵⇤(j⇤))

such that j⇤ 2 argmaxj 6=i ui

�
M(t), x(t); j,↵⇤(j)

�
.

Secondly, all agents communicate with their neighbors and update their

beliefs using the updated trust weights:

x(t+ 1) = [x(t)](i; j,↵) = M(t+ 1)x(t) = [M(t)](i; j,↵)x(t).

In the sequel, we will often simply write x(t + 1) and omit the depen-

dence on the agent selected to manipulate and her choice (j,↵). We can

rewrite this equation as x(t + 1) = M(t + 1)x(0), where M(t + 1) =

M(t + 1)M(t) · · ·M(1) (and M(t) = In for t < 1, where In is the n ⇥ n

identity matrix) denotes the overall trust matrix.

Now, let us give some examples of satisfaction functions that fulfill our

assumptions.

Example 1 (Satisfaction functions).

(i) Let � 2 N and

vi

�
[M(t)](i; j,↵), x(t)

�
= � 1

n� 1

X

k 6=i

⇣
xi(t)�

�
M(t+ 1)� x(t)

�
k

⌘2
,

where M(t + 1) = [M(t)](i; j,↵). That is, agent i’s objective is that

each other agent’s opinion � periods ahead is as close as possible

12Note that for all j, vi(M(i; j,↵), x) is continuous in ↵ and bounded from above
since vi(·, x) is bounded from above on the compact set [0, 1]n⇥n for all x 2 Rn. In
total, the utility is continuous in ↵ > 0 and since the costs are strictly increasing and
strictly convex in ↵ > 0, there always exists an optimal level of e↵ort, which might not
be unique, though.
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to her current opinion, disregarding possible manipulations in future

periods.

(ii)

vi

�
[M(t)](i; j,↵), x(t)

�
= �

 
xi(t)�

1

n� 1

X

k 6=i

xk(t+ 1)

!2

,

where xk(t+ 1) =
�
[M(t)](i; j,↵)x(t)

�
k
. That is, agent i wants to be

close to the average opinion in society one period ahead, but disre-

gards di↵erences on the individual level.

We will frequently choose in examples the first satisfaction function

with parameter � = 1, together with a cost function that combines fixed

costs and quadratic costs of e↵ort.

Remark 1. If we choose satisfaction functions vi ⌘ v for some constant v

and all i 2 N , then agents do not have any incentive to exert e↵ort and

our model reverts to the classical model of DeGroot (1974).

We now introduce the notion of consensus. Whether or not a consensus

is reached in the limit depends generally on the initial opinions.

Definition 1 (Consensus). We say that a group of agents G ✓ N reaches

a consensus given initial opinions (xi(0))i2N , if there exists x(1) 2 R such

that

lim
t!1

xi(t) = x(1) for all i 2 G.

3 The Trust Structure

We investigate how manipulation can modify the structure of interaction or

trust in society. We first shortly recall some graph-theoretic terminology.13

We call a group of agents C ✓ N minimal closed at period t if these agents

only trust agents inside the group, i.e.,
P

j2C mij(t) = 1 for all i 2 C, and if

this property does not hold for a proper subset C 0 ( C. The set of minimal

closed groups at period t is denoted C(t) and is called the trust structure.

13See Golub and Jackson (2010).
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A walk at period t of length K is a sequence of agents i1, i2, . . . , iK+1 such

that mik,ik+1
(t) > 0 for all k = 1, 2, . . . , K. A walk is a path if all agents

are distinct. A cycle is a walk that starts and ends in the same agent. A

cycle is simple if only the starting agent appears twice in the cycle. We say

that a minimal closed group of agents C 2 C(t) is aperiodic if the greatest

common divisor14 of the lengths of simple cycles involving agents from C

is 1.15 Note that this is fulfilled if mii(t) > 0 for some i 2 C.

At each period t, we can decompose the set of agents N into minimal

closed groups and agents outside these groups, the rest of the world, R(t):

N =
[

C2C(t)

C [R(t).

Within minimal closed groups, all agents interact indirectly with each other,

i.e., there is a path between any two agents. We say that the agents are

strongly connected. For this reason, minimal closed groups are also called

strongly connected and closed groups, see Golub and Jackson (2010). More-

over, agent i 2 N is part of the rest of the world R(t) if and only if there is

a path at period t from her to some agent in a minimal closed group C 63 i.

We say that a manipulation at period t does not change the trust struc-

ture if C(t + 1) = C(t). It also implies that R(t + 1) = R(t). We find that

manipulation changes the trust structure when the manipulated agent be-

longs to a minimal closed group and additionally the manipulating agent

does not belong to this group, but may well belong to another minimal

closed group. In the latter case, the group of the manipulated agent is

disbanded since it is not anymore closed and its agents join the rest of the

world. However, if the manipulating agent does not belong to a minimal

closed group, the e↵ect on the group of the manipulated agent depends on

the trust structure. Apart from being disbanded, it can also be the case

that the manipulating agent and possibly others from the rest of the world

join the group of the manipulated agent.

Proposition 1. Suppose that E(t) = (i; j,↵), ↵ > 0, at period t.

14For a set of integers S ✓ N, gcd(S) = max {k 2 N | m/k 2 N for all m 2 S} denotes
the greatest common divisor.

15Note that if one agent in a simple cycle is from a minimal closed group, then so are
all.
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(i) Let i 2 N , j 2 R(t) or i, j 2 C 2 C(t). Then, the trust structure does

not change.

(ii) Let i 2 C 2 C(t) and j 2 C

0 2 C(t)\{C}. Then, C 0
is disbanded, i.e.,

C(t+ 1) = C(t)\{C 0}.

(iii) Let i 2 R(t) and j 2 C 2 C(t).

(a) Suppose that there exists no path from i to k for any k 2 [C02C(t)\{C}C
0
.

Then, R

0 [ {i} joins C, i.e.,

C(t+ 1) = C(t)\{C} [ {C [R

0 [ {i}},

where R

0 = {l 2 R(t)\{i} | there is a path from i to l}.

(b) Suppose that there exists C

0 2 C(t)\{C} such that there exists a

path from i to some k 2 C

0
. Then, C is disbanded.

All proofs can be found in Appendix A. The following example shows

that manipulation can enable a society to reach a consensus due to changes

in the trust structure.

Example 2 (Consensus due to manipulation). Take N = {1, 2, 3} and

assume that

ui

�
M(t), x(t); j,↵

�
= �1

2

X

k 6=i

�
xi(t)� xk(t+ 1)

�2 �
�
↵

2 + 1/10 · 1{↵>0}(↵)
�

for all i 2 N . Notice that the first part of the utility is the satisfaction

function in Example 1 part (i) with parameter � = 1, while the second part,

the costs of e↵ort, combines fixed costs, here 1/10, and quadratic costs of

e↵ort. Let x(0) = (10, 5,�5)0 be the vector of initial opinions and

M(0) =

0

B@
.8 .2 0

.4 .6 0

0 0 1

1

CA

be the initial trust matrix. Hence, C(0) = {{1, 2}, {3}}. Suppose that first
agent 1 and then agent 3 are drawn to meet another agent. Then, at period

11



0, agent 1’s optimal decision is to exert ↵ = 2.5416 e↵ort on agent 3. The

trust of the latter is updated to

m3(1) = (.72, 0, .28) ,

while the others’ trust does not change, i.e., mi(1) = mi(0) for i = 1, 2,

and the updated opinions become

x(1) = M(1)x(0) = (9, 7, 5.76)0 .

Notice that the group of agent 3 is disbanded (see part (ii) of Proposition

1). In the next period, agent 3’s optimal decision is to exert ↵ = .75 e↵ort

on agent 1. This results in the following updated trust matrix:

M(2) =

0

B@
.46 .11 .43

.4 .6 0

.72 0 .28

1

CA .

Notice that agent 3 joins group {1, 2} (see part (iii,a) of Proposition 1) and

therefore, N is minimal closed, which implies that the group will reach a

consensus, as we will see later on.

However, notice that if instead of agent 3 another agent is drawn in

period 1, then agent 3 never manipulates since when finally she would

have the opportunity, her opinion is already close to the others’ opinions

and therefore, she stays disconnected from them. Nevertheless, the agents

would still reach a consensus in this case due to the manipulation at period

0. Since agent 3 trusts agent 1, she follows the consensus that is reached

by the first two agents.

4 The Long-Run Dynamics

We now look at the long-run e↵ects of manipulation. First, we study the

consequences of a single manipulation on the long-run opinions of minimal

closed groups. In this context, we are interested in the role of manipu-

lation in opinion leadership. Secondly, we investigate the outcome of the

16Stated values are rounded to two decimals for clarity reasons.
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influence process. Finally, we discuss how manipulation a↵ects the speed

of convergence of minimal closed groups and illustrate our results by means

of an example.

4.1 Opinion Leadership

Typically, an agent is called opinion leader if she has substantial influence

on the long-run beliefs of a group. That is, if she is among the most influ-

ential agents in the group. Intuitively, manipulating others should increase

her influence on the long-run beliefs and thus foster opinion leadership.

To investigate this issue, we need a measure for how remotely agents

are located from each other in the network, i.e., how directly agents trust

other agents. For this purpose, we can make use of results from Markov

chain theory. Let (X(t)
s )1s=0 denote the homogeneous Markov chain induced

by the transition matrix M(t). The agents are then interpreted as states

of the Markov chain and the trust of i in j, mij(t), is interpreted as the

transition probability from state i to state j. Then, the mean first passage

time from state i to state j is defined as E[inf{s � 0 | X(t)
s = j} | X(t)

0 = i].

Given the current state of the Markov chain is i, the mean first passage

time to j is the expected time it takes for the chain to reach state j.

In other words, the mean first passage time from i to j corresponds to

the average (expected) length of a random walk on the weighted network

M(t) from i to j that takes each link with probability equal to the assigned

weight.17 This average length is small if the weights along short paths from

i to j are high, i.e., if agent i trusts agent j rather directly. We therefore

call this measure weighted remoteness of j from i.

Definition 2 (Weighted remoteness). Take i, j 2 N , i 6= j. The weighted

remoteness at period t of agent j from agent i is given by

rij(t) = E[inf{s � 0 | X(t)
s = j} | X(t)

0 = i],

where (X(t)
s )1s=0 is the homogeneous Markov chain induced by M(t).

17More precisely, it is a random walk on the state space N that, if currently in state
k, travels to state l with probability mkl(t). The length of this random walk to j is the
time it takes for it to reach state j.
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The following remark shows that the weighted remoteness attains its

minimum when i trusts solely j.

Remark 2. Take i, j 2 N , i 6= j.

(i) rij(t) � 1,

(ii) rij(t) < +1 if and only if there is a path from i to j, and, in partic-

ular, if i, j 2 C 2 C(t),

(iii) rij(t) = 1 if and only if mij(t) = 1.

To provide some more intuition, let us look at an alternative (implicit)

formula for the weighted remoteness. Suppose that i, j 2 C 2 C(t) are

two distinct agents in a minimal closed group. By part (ii) of Remark 2,

the weighted remoteness is finite for all pairs of agents in that group. The

unique walk from i to j with (average) length 1 is assigned weight (or has

probability, when interpreted as a random walk) mij(t). And the average

length of walks to j that first pass through k 2 C\{j} is rkj(t) + 1, i.e.,

walks from i to j with average length rkj(t) + 1 are assigned weight (have

probability) mik(t). Thus,

rij(t) = mij(t) +
X

k2C\{j}

mik(t)(rkj(t) + 1) .

Finally, applying
P

k2C mik(t) = 1 leads to the following remark.

Remark 3. Take i, j 2 C 2 C(t), i 6= j. Then,

rij(t) = 1 +
X

k2C\{j}

mik(t)rkj(t).

Note that computing the weighted remoteness using this formula amounts

to solving a linear system of |C|(|C| � 1) equations, which has a unique

solution.

We denote by ⇡(C; t) the probability vector of the agents’ influence on

the final consensus of their group C 2 C(t) at period t, given that the group

is aperiodic and the trust matrix does not change any more.18 In this case,

18In the language of Markov chains, ⇡(C; t) is known as the unique stationary distri-
bution of the aperiodic communication class C. Without aperiodicity, the class might
fail to converge to consensus.
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the group converges to

x(1) = ⇡(C; t)0 x(t)|C =
X

i2C

⇡i(C; t)xi(t),

where x(t)|C = (xi(t))i2C is the restriction of x(t) to agents in C. In

other words, ⇡i(C; t), i 2 C, is the influence weight of agent i’s opinion

at period t, xi(t), on the consensus of C. Notice that the influence vector

⇡(C; t) depends on the trust matrix M(t) and therefore it changes with

manipulation. A higher value of ⇡i(C; t) corresponds to more influence of

agent i on the consensus. Each agent in a minimal closed group has at

least some influence on the consensus: ⇡i(C; t) > 0 for all i 2 C.19

We now turn back to the long-run consequences of manipulation and

thus, opinion leaders. We restrict our analysis to the case where both the

manipulating and the manipulated agent are in the same minimal closed

group. Since in this case the trust structure is preserved we can compare

the influence on the long-run consensus of the group before and after ma-

nipulation.

Proposition 2. Suppose that at period t, group C 2 C(t) is aperiodic and

E(t) = (i; j,↵), i, j 2 C. Then, aperiodicity is preserved and the influence

of agent k 2 C on the final consensus of her group changes as follows,

⇡k(C; t+ 1)� ⇡k(C; t) =
(

↵/(1 + ↵)⇡i(C; t)⇡j(C; t+ 1)
P

l2C\{i} mjl(t)rli(t) if k = i

↵/(1 + ↵)⇡k(C; t)⇡j(C; t+ 1)
⇣P

l2C\{k} mjl(t)rlk(t)� rik(t)
⌘

if k 6= i

.

Corollary 1. Suppose that at period t, group C 2 C(t) is aperiodic and

E(t) = (i; j,↵), i, j 2 C. If ↵ > 0, then

(i) agent i strictly increases her long-run influence, ⇡i(C; t+1) > ⇡i(C; t),

(ii) any other agent k 6= i of the group can either gain or lose influence,

depending on the trust matrix. She gains if and only if

X

l2C\{k,i}

mjl(t)
�
rlk(t)� rik(t)

�
> mjk(t)rik(t),

19See Golub and Jackson (2010).
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(iii) agent k 6= i, j loses influence for sure if j trusts solely her, i.e.,

mjk(t) = 1.

Proposition 2 tells us that the change in long-run influence for any agent

k depends on the e↵ort agent i exerts to manipulate agent j, agent k’s cur-

rent long-run influence and the future long-run influence of the manipulated

agent j. In particular, the magnitude of the change increases with i’s e↵ort,

and it is zero if agent i does not exert any e↵ort. Furthermore, notice that

dividing both sides by agent k’s current long-run influence, ⇡k(C; t), yields

the relative change in her long-run influence.

When agent k = i, we find that this change is strictly positive whenever

she exerts some e↵ort. In this sense, manipulation fosters opinion leader-

ship. It is large if the weighted remoteness of i from agents (other than

i) that are significantly trusted by j is large. To understand this better,

notice that the long-run influence of an agent depends on how much she is

trusted by agents that are trusted. Or, in other words, an agent is influen-

tial if she is influential on other influential agents. Thus, there is a direct

gain of influence due to an increase of trust from j and an indirect loss of

influence (that is always dominated by the direct gain) due to a decrease of

trust from j faced by agents that (indirectly) trust i. This explains why it

is better for i if agents facing a large decrease of trust from j (those trusted

much by j) do not (indirectly) trust i much, i.e., i has a large weighted

remoteness from them.

For any other agent k 6= i, it turns out that the change can be positive

or negative. It is positive if, broadly speaking, j does not trust k a lot,

the weighted remoteness of k from i is small and furthermore the weighted

remoteness of k from agents (other than i) that are significantly trusted by

j is larger than that from i. In other words, it is positive if the manipulating

agent, who gains influence for sure, (indirectly) trusts agent k significantly

(small weighted remoteness of k from i), k does not face a large decrease of

trust from j and those agents facing a large decrease from j (those trusted

much by j) (indirectly) trust k less than i does.

Notice that for any agent k 6= i, j, this is a trade-o↵ between an indirect

gain of trust due to the increase of trust that i obtains from j, on the one

hand, and an indirect loss of influence due to a decrease of trust from j

16



faced by agents that (indirectly) trust k as well as the direct loss of influence

due to a decrease of trust from j, on the other hand. In the extreme case

where j only trusts k, the direct loss of influence dominates the indirect

gain of influence for sure.

In particular, it means that even the manipulated agent j can gain

influence. In a sense, such an agent would like to be manipulated because

she trusts the “wrong” agents. For agent j, being manipulated is positive

if her weighted remoteness from agents she trusts significantly is large and

furthermore, her weighted remoteness from i is small. Hence, it is positive if

the manipulating agent (indirectly) trusts her significantly (small weighted

remoteness from i) and agents facing a large decrease of trust from her

(those she trusts) do not (indirectly) trust her much. Here, the trade-o↵ is

between the indirect gain of trust due to the increase of trust that i obtains

from her and the indirect loss of influence due to a decrease of trust from her

faced by agents that (indirectly) trust her. Note that the gain of influence

is particularly large if the manipulating agent trusts j significantly.

The next example shows that indeed in some situations an agent can

gain from being manipulated in the sense that her influence on the long-run

beliefs increases.

Example 3 (Being manipulated can increase influence). TakeN = {1, 2, 3}
and assume that

M(0) =

0

B@
.25 .25 .5

.5 .5 0
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1
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is the initial trust matrix. Notice that N is minimal closed. Suppose that

agent 1 has the opportunity to meet another agent and decides to exert

e↵ort ↵ > 0 on agent 3. Then, from Proposition 2, we get

⇡3(N ; 1)� ⇡3(N ; 0) =
↵

1 + ↵

⇡3(N ; 0)⇡3(N ; 1)
X

l=1,2

m3l(0)rl3(0)� r13(0)

=
↵

1 + ↵

⇡3(N ; 0)⇡3(N ; 1)
7

10
> 0,

since ⇡3(N ; 0), ⇡3(N ; 1) > 0. Hence, being manipulated by agent 1 in-

creases agent 3’s influence on the long-run beliefs. The reason is that,

initially, she trusts too much agent 2 – an agent that does not trust her at
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all. She gains influence from agent 1’s increase of influence on the long-run

beliefs since this agent trusts her. In other words, after being manipulated

she is trusted by an agent that is trusted more.

Furthermore, we can use Proposition 2 to compare the expected influ-

ence on the long-run consensus of society before and after manipulation

when all agents are in the same minimal closed group.20 For this result

we need to slightly change our notation. We denote the decision of agent

i 2 N when she is selected to meet another agent by
�
j(i),↵(i; j(i))

�
, i.e.,

agent i decides to exert e↵ort ↵(i; j(i)) on agent j(i).

Corollary 2. Suppose that at period t, C(t) = {N} and that N is aperiodic.

Then, aperiodicity is preserved and, in expectation, the influence of agent

k 2 N on the final consensus of the society changes as follows from period

t to t+ 1,

E[⇡k(N ; t+ 1)� ⇡k(N ; t) | M(t), x(t)] =

⇡k(N ; t)

n

"
X

i2N

 
↵(i; j(i))

1 + ↵(i; j(i))
⇡j(i)(N ; t+ 1)

X

l 6=k

mj(i)l(t)rlk(t)

!
�

X

i 6=k

↵(i; j(i))

1 + ↵(i; j(i))
⇡j(i)(N ; t+ 1)rik(t)

#
.

Notice that an agent gains long-run influence in expectation if and only

if the term in the square brackets is positive. For this to hold, it is necessary

that ↵(i; j(i)) > 0 for some i 2 N at period t. Moreover, it follows from

Corollary 1 part (i) that ↵(k; j(k)) > 0 and ↵(i; j(i)) = 0 for all i 6= k at

period t (i.e., only agent k would manipulate if she was selected at t) is a

su�cient condition for that she gains influence in expectation. The reason

is that agent k gains influence for sure when she manipulates herself, and

since no other agent manipulates when selected, she gains in expectation.

Notice that by dividing both sides by agent k’s current long-run influence,

⇡k(C; t), we get the expected relative change in her long-run influence.

20Notice that if not all agents are in the same minimal closed group, then the group in
question could be disbanded with some probability and hence would not anymore reach
a consensus.
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4.2 Convergence

We now determine where the process finally converges to. First, we look

at the case where all agents are in the same minimal closed group. Given

the group is aperiodic, we show that if the satisfaction level only depends

on the opinions (before and after manipulation), i.e., a change in trust that

does not a↵ect opinions does not change the satisfaction of an agent, and

if there is a fixed cost for exerting e↵ort, then manipulation comes to an

end, eventually. At some point, opinions in the society become too similar

to be manipulated. Second, we determine the final consensus the society

converges to.

Lemma 1. Suppose that C(0) = {N} and that N is aperiodic. If for all

i, j 2 N and ↵ > 0,

(i) vi

�
M(i; j,↵), x

�
� vi

�
M(i; j, 0), x

�
! 0 if kx(i; j,↵)� x(i; j, 0)k ! 0,

and

(ii) ci(j,↵) � c > 0,

then, there exists an almost surely finite stopping time ⌧ such that from

period t = ⌧ on there is no more manipulation, where k·k is any norm on

Rn
.

21
The society converges to the random variable

x(1) = ⇡(N ; ⌧)0 M(⌧ � 1) x(0).

Now, we turn to the general case of any trust structure. We show that

after a finite number of periods, the trust structure settles down. Then,

it follows from the above result that, under the beforementioned condi-

tions, manipulation within the minimal closed groups that have finally been

formed comes to an end. We also determine the final consensus opinion of

each aperiodic minimal closed group.

Proposition 3.

(i) There exists an almost surely finite stopping time ⌧ such that for all

t � ⌧ , C(t) = C(⌧).
21In our context, this means that ⌧ is a random variable such that the event ⌧ = t

only depends on which agents were selected to meet another agent at periods 1, 2, . . . , t,
and furthermore ⌧ is almost surely finite, i.e., the event ⌧ < +1 has probability 1.
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(ii) If C 2 C(⌧) is aperiodic and for all i, j 2 C, ↵ > 0,

(1) vi

�
M(i; j,↵), x

�
�vi

�
M(i; j, 0), x

�
! 0 if kx(i; j,↵)�x(i; j, 0)k !

0, and

(2) ci(j,↵) � c > 0,

then, there exists an almost surely finite stopping time b⌧ � ⌧ such

that at all periods t � b⌧ , agents in C are not manipulated. Moreover,

they converge to the random variable

x(1) = ⇡(C;b⌧)0 M(b⌧ � 1)|C M(b⌧ � 2)|C · · · M(1)|C x(0)|C .

In what follows we use ⌧ and b⌧ in the above sense. We denote by ⇡i(C; t)

the overall influence of agent i’s initial opinion on the consensus of group

C at period t given no more manipulation a↵ecting C takes place. The

overall influence is implicitly given by Proposition 3.

Corollary 3. The overall influence of the initial opinion of agent i 2 N
on the consensus of an aperiodic group C 2 C(⌧) is given by

⇡i(C;b⌧) =
( �

⇡(C;b⌧)0 M(b⌧ � 1)|C M(b⌧ � 2)|C · · · M(1)|C
�
i

if i 2 C

0 if i /2 C

.

It turns out that an agent outside a minimal closed group that has

finally formed can never have any influence on its consensus opinion.

4.3 Speed of Convergence

We have seen that within an aperiodic minimal closed group C 2 C(t)
agents reach a consensus given that the trust structure does not change

anymore. This means that their opinions converge to a common opinion.

By speed of convergence we mean the time that this convergence takes.

That is, it is the time it takes for the expression

|xi(t)� xi(1)|

to become small. It is well known that this depends crucially on the second

largest eigenvalue �2(C; t) of the trust matrix M(t)|C , where M(t)|C =
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(mij(t))i,j2C denotes the restriction of M(t) to agents in C. Notice that

M(t)|C is a stochastic matrix since C is minimal closed. The smaller the

eigenvalue in absolute value, the faster the convergence to consensus (see

Jackson, 2008).

Thus, the change in the second largest eigenvalue due to manipulation

tells us whether the speed of convergence has increased or decreased. In

this context, the concept of homophily is important, that is, the tendency

of people to interact relatively more with those people who are similar to

them.22

Definition 3 (Homophily). The homophily of a group of agents G ✓ N
at period t is defined as

Hom(G; t) =
1

|G|

0

@
X

i,j2G

mij(t)�
X

i2G,j /2G

mij(t)

1

A
.

The homophily of a group of agents is the normalized di↵erence of their

trust in agents inside and outside the group. Notice that a minimal closed

group C 2 C(t) attains the maximum homophily, Hom(C; t) = 1. Consider

a cut of society (S,N\S), S ✓ N , S 6= ;, into two groups of agents S

and N\S.23 The next lemma establishes that manipulation across the cut

decreases homophily, while manipulation within a group increases it.

Lemma 2. Take a cut of society (S,N\S). If i 2 N manipulates j 2 S at

period t, then

(i) the homophily of S (strictly) increases if i 2 S (and

P
k2S mjk(t) <

1), and

(ii) the homophily of S (strictly) decreases if i /2 S (and

P
k2S mjk(t) >

0).

Now, we come back to the speed of convergence. Given the complexity

of the problem for n � 3, we consider an example of a two-agent soci-

22Notice that we do not model explicitly the characteristics that lead to homophily.
23There exist many di↵erent notions of homophily in the literature. Our measure

is similar to the one used in Golub and Jackson (2012). We can consider the average
homophily (Hom(S; t) + Hom(N\S; t))/2 with respect to the cut (S,N\S) as a gener-
alization of degree-weighted homophily to general weighted averages.
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ety that suggests that homophily helps to explain the change in speed of

convergence.

Example 4 (Speed of convergence with two agents). Take N = {1, 2} and

suppose that at period t, N is minimal closed and aperiodic. Then, we

have that �2(N ; t) = m11(t)�m21(t) = m22(t)�m12(t). Therefore, we can

characterize the change in the second largest eigenvalue as follows:

|�2(N ; t+ 1)|  |�2(N ; t)| , |m11(t+ 1)�m21(t+ 1)|  |m11(t)�m21(t)|

, |m22(t+ 1)�m12(t+ 1)|  |m22(t)�m12(t)|.

It means that convergence is faster after manipulation if afterwards agents

behave more similar, i.e., the trust both agents put on agent 1’s opinion

is more similar (which implies that also the trust they put on agent 2’s

opinion is more similar). Thus, if for instance

m22(t) > (1 + ↵)m12(t), (1)

then agent 1 manipulating agent 2 accelerates convergence. However, if

m22(t) < m12(t), it slows down convergence since manipulation increases

the already existing tendency of opinions to oscillate. The more interesting

case is the first one, though. We can write (1) as

(1 + ↵)Hom({1}, t) + Hom({2}, t) > ↵,

that is, manipulation accelerates convergence if there is su�cient aggre-

gated homophily in the society and agent 1 does not exert too much e↵ort.

The example shows that manipulation can speed up or slow down the

convergence process. More important, it suggests that in a su�ciently

homophilic society where exerting e↵ort is rather costly, manipulation re-

ducing homophily (i.e., across the cut, see Lemma 2) increases the speed of

convergence. Notice that manipulation increasing homophily (i.e., within

one of the groups separated by the cut) is not possible in this simple setting

since both groups are singletons. However, it seems plausible that it would

slow down convergence in homophilic societies.24

24In the above example, increasing homophily is attained by increasing the weight
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4.4 Three-agents Example

Finally, let us consider an example with three agents to illustrate the results

of this section. We use a utility model that is composed of the satisfaction

function in Example 1 (i) and a cost function that combines fixed costs and

quadratic costs of e↵ort.

Example 5 (Three-agents society). Take N = {1, 2, 3} and assume that

ui

�
M(t), x(t); j,↵

�
= �1

2

X

k 6=i

�
xi(t)� xk(t+ 1)

�2 �
�
↵

2 + 1/10 · 1{↵>0}(↵)
�

for all i 2 N . Let x(0) = (10, 5, 1)0 be the vector of initial opinions and

M(0) =

0

B@
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0 .6 .4
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be the initial trust matrix. Notice that this society is connected. The

vector of initial long-run influence – and of long-run influence in the clas-

sical model without manipulation – is ⇡(N ; 0) = ⇡cl = (.12, .46, .42)0

and the initial speed of convergence is measured by �2(N ; 0) = �2,cl =

.55. At period 0, any agent selected to exert e↵ort would do so. It is

either E(0) = (1; 3, 1.46), (2; 1, .6) or (3; 1, 1.4). In expectation, we get

E[⇡(N ; 1)] = (.2, .41, .39)0 and E[�2(N ; 1)] = .21. So, on average agent

1 profits from manipulation. Since initially the other agents almost did

not listen to her and also her opinion was far apart from the others’ opin-

ions, she exerts significant e↵ort when selected. In particular, the society

is homophilic: taking the cut ({1}, {2, 3}), we get

Hom({1}, 0) = .2 and Hom({2, 3}, 0) = .9.

So, since with probability one the manipulation is across the cut, the strong

decrease in the (expected) second largest eigenvalue supports our suggestion

from Section 4.3 that manipulation reducing homophily (i.e., across the cut)

increases the speed of convergence.

of an agent on herself, which leads to an increase of the second largest eigenvalue in
su�ciently homophilic societies.
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At the next period, there is only manipulation if at the last period an

agent other than agent 3 was selected to manipulate. In expectation, we get

E[⇡(N ; 2)] = (.22, .41, .38)0 and E[�2(N ; 2)] = .17. Again, agent 1 profits

on average from manipulation, but only slightly since opinions are already

closer and since she is not as isolated as in the beginning. The convergence

gets, on average, slightly faster as well.

Manipulation ends here, that is, with probability one no agent exerts

e↵ort from period 2 on, i.e M(t) = M(2) for all t � 2. Hence, the expected

influence of the agents’ initial opinions on the consensus is

E[⇡(N ; 2)0] = E[⇡(N ; 2)0 M(1)] = E[⇡(N ; 2)0 M(1)] = (.21, .41, .38).

Thus, the expected consensus that society reaches is

E[x(1)] = E[⇡(N ; 2)0]x(0) = 4.53.

Compared to this, the classical model gives xcl(1) = ⇡

0
clx(0) = 3.88 and

hence, our model leads to an average long-run belief of society that is closer

to the initial opinion of agent 1 since she is the one who (on average) gains

influence due to manipulation.

5 The Wisdom of Crowds

We now investigate how manipulation a↵ects the extent of misinformation

in society. In this section, we assume that the society forms one minimal

closed and aperiodic group. Clearly, societies that are not connected fail

to aggregate information.25 We use an approach similar to Acemoglu et al.

(2010) and assume that there is a true state µ = (1/n)
P

i2N xi(0) that

corresponds to the average of the initial opinions of the n agents in the

society. Information about the true state is dispersed, but can easily be

aggregated by the agents: uniform overall influence on the long-run beliefs

leads to perfect aggregation of information.26 Notice that, in general, agents

25However, as in Example 2, we can observe that manipulation leads to a connected
society and thus such an event can also be viewed as reducing the extent of misinfor-
mation in the society.

26We can think of the initial opinions as being drawn independently from some dis-
tribution with mean µ. Then, uniform overall influence leads as well to optimal aggre-
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cannot infer the true state from the initial information since they only get

to know the information of their neighbors.

At a given period t, the wisdom of the society is measured by the

di↵erence between the true state and the consensus they would reach in

case no more manipulation takes place:

⇡(N ; t)0 x(0)� µ =
X

i2N

✓
⇡i(N ; t)� 1

n

◆
xi(0).

Hence, k⇡(N ; t)�(1/n)Ik2 measures the extent of misinformation in the so-

ciety, where I = (1, 1, . . . , 1)0 2 Rn is a vector of 1s and kxk2 =
pP

k2N |xk|2

is the standard Euclidean norm of x 2 Rn. We say that an agent i undersells

(oversells) her information at period t if ⇡i(N ; t) < 1/n (⇡i(N ; t) > 1/n).

In a sense, an agent underselling her information is, compared to her overall

influence, (relatively) well informed.

Definition 4 (Extent of misinformation). A manipulation at period t re-

duces the extent of misinformation in society if

k⇡(N ; t+ 1)� (1/n)Ik2 < k⇡(N ; t)� (1/n)Ik2,

otherwise, it (weakly) increases the extent of misinformation.

The next lemma describes, given some agent manipulates another agent,

the change in the overall influence of an agent from period t to period t+1.

Lemma 3. Suppose that C(0) = {N} and that N is aperiodic. For k 2 N ,

at period t,

⇡k(N ; t+ 1)� ⇡k(N ; t) =
nX

l=1

mlk(t)
�
⇡l(N ; t+ 1)� ⇡l(N ; t)

�
.

In case there is manipulation at period t, the overall influence of the

initial opinion of an agent increases if the agents that overall trust her gain

(on average) influence from the manipulation. Next, we provide conditions

ensuring that a manipulation reduces the extent of misinformation in the

gation, the di↵erence being that it is not perfect in this case due to the finite number
of samples.
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society. First, manipulation should not be too cheap for the agent who is

manipulating. Second, only agents underselling their information should

gain overall influence. We say that ⇡(N ; t) is generic if for all k 2 N it

holds that ⇡k(N ; t) 6= 1/n.

Proposition 4. Suppose that C(0) = {N}, N is aperiodic and that ⇡(N ; t)

is generic. Then, there exists ↵ > 0 such that E(t) = (i; j,↵), ↵ > 0,

reduces the extent of misinformation if

(i) ↵  ↵, and

(ii)
Pn

l=1 mlk(t)
�
⇡l(N ; t + 1) � ⇡l(N ; t)

�
� 0 if and only if k undersells

her information at period t.

Intuitively, condition (ii) says that (relatively) well informed agents

(those that undersell their information) should gain overall influence, while

(relatively) badly informed agents (those that oversell their information)

should lose overall influence. Then, this leads to a distribution of overall

influence in the society that is more equal and hence reduces the extent of

misinformation in the society – but only if i does not exert too much e↵ort

on j (condition (i)). Otherwise, manipulation makes some agents too in-

fluential, in particular the manipulating agent, and leads to a distribution

of overall influence that is even more unequal than before. In other words,

information aggregation can be severely harmed when for some agents ma-

nipulation is rather cheap.

We now introduce a true state of the world into Example 5. On average,

manipulation reduces the extent of misinformation in each period and the

society converges to a more precise consensus.

Example 6 (Three-agents society, cont’d). Recall that N = {1, 2, 3} and

that

ui

�
M(t), x(t); j,↵

�
= �1

2

X

k 6=i

�
xi(t)� xk(t+ 1)

�2 �
�
↵

2 + 1/10 · 1{↵>0}(↵)
�
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for all i 2 N . Furthermore, x(0) = (10, 5, 1)0 and

M(0) =

0

B@
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CA .

Hence, µ = (1/3)
P

i2N xi(0) = 5.33 is the true state. The vector of

initial overall influence is ⇡(N ; 0) = ⇡(N ; 0) = (.12, .46, .42)0. Recall

that in expectation, we obtain E[⇡(N ; 1)] = E[⇡(N ; 1)] = (.2, .41, .39)0,

E[⇡(N ; 2)] = (.21, .41, .38)0 and that there is no more manipulation from

period 2 on. Thus,

k⇡(N ; 0)� (1/3)Ik2 = .268 > kE[⇡(N ; 1)]� (1/3)Ik2 = .161

> kE[⇡(N ; 2)]� (1/3)Ik2 = .158.

So, in terms of the expected long-run influence, manipulation reduces the

extent of misinformation in society. And indeed, the agents reach the

expected consensus E[x(1)] = 4.53, which is closer to the true state µ =

5.33 than the consensus they would have reached in the classical model of

DeGroot, xcl(1) = 3.88.

This confirms the intuition that manipulation has the most bite in the

beginning, before potentially misleading opinions have spread. Further-

more, this example suggests that manipulation can have positive e↵ects on

information aggregation if agents have homogeneous preferences for ma-

nipulation.

6 Conclusion

We investigated the role of manipulation in a model of opinion formation

where agents have beliefs about some question of interest and update them

taking weighted averages of neighbors’ opinions. Our analysis focused on

the consequences of manipulation for the trust structure and long-run be-

liefs in the society, including learning.

We showed that manipulation can modify the trust structure and lead

to a connected society, and thus, to consensus. Furthermore, we found
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that manipulation fosters opinion leadership in the sense that the manip-

ulating agent always increases her influence on the long-run beliefs. And

more surprisingly, this may even be the case for the manipulated agent.

The expected change of influence on the long-run beliefs is ambiguous and

depends on the agents’ preferences and the social network.

We also showed that the trust structure of the society settles down and,

if the satisfaction of agents does not directly depend on the trust, manip-

ulation will come to an end and they reach a consensus (under some weak

regularity condition). To obtain insights on the relation of manipulation

and the speed of convergence, we provided examples and argued that in

su�ciently homophilic societies where manipulation is rather costly, ma-

nipulation accelerates convergence if it decreases homophily and otherwise

it slows down convergence.

Regarding learning, we were interested in the question whether manip-

ulation is beneficial or harmful for information aggregation. We used an

approach similar to Acemoglu et al. (2010) and showed that manipulation

reduces the extent of misinformation in the society if manipulation is rather

costly and the agents underselling their information gain and those over-

selling their information lose overall influence. Not surprisingly, agents for

whom manipulation is cheap can severely harm information aggregation.

Furthermore, our main example suggests that homogeneous preferences for

manipulation favor a reduction of the extent of misinformation in society.

We should notice that manipulation has no bite if we use the approach

of Golub and Jackson (2010). They studied large societies and showed that

opinions converge to the true state if the influence of the most influential

agent in the society is vanishing as the society grows. Under this condition,

manipulation does not change convergence to the true state since its conse-

quences are negligible compared to the size of the society. In large societies,

information is aggregated before manipulation (and possibly a series of ma-

nipulations) can spread misinformation. The only way manipulation could

have consequences for information aggregation in large societies would be

to enable agents to manipulate a substantial proportion of the society in-

stead of only one agent. Relaxing the restriction to manipulation of a single

agent at a time is left for future work.

We view our paper as first attempt in studying manipulation and mis-
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information in social networks. Our approach incorporated strategic con-

siderations in a model of opinion formation à la DeGroot. We made several

simplifying assumptions and derived results that apply to general societies.

We plan to address some of the open issues in future work, e.g., extending

manipulation to groups and allowing for more sophisticated agents.

A Appendix

Proof of Proposition 1

(i) Follows immediately since all minimal closed groups remain unchanged.

(ii) If agent i manipulates agent j, then mji(t + 1) > 0 and thus, since

C

0 3 j is minimal closed at period t, there exists a path at t+1 from

l to i for all l 2 C

0. Since C is still minimal closed, it follows that

R(t+ 1) = R(t) [ C

0, i.e., C(t+ 1) = C(t)\{C 0}.

(iii) (a) If agent imanipulates agent j, then it follows that
P

l2C[{i} mkl(t+

1) = 1 for all k 2 C since C is closed at t. Furthermore, since by

assumption there is no path from i to k for any k 2 [C02C(t)\{C}C
0

and by definition of R0,
P

l2C[R0[{i} mkl(t + 1) = 1 for all k 2
R

0 [ {i}. Hence, it follows that
P

l2C[R0[{i} mkl(t + 1) = 1 for

all k 2 C [R

0 [ {i}, i.e., C [R

0 [ {i} is closed.

Note that moreover, since by assumption there is no path from

i to k for any k 2 [C02C(t)\{C}C
0, there is a path from i to j

(otherwise R

0 [ {i} was closed at t). Thus, since C is minimal

closed and i manipulates j, there is a path from k to l for all

k, l 2 C [ {i} at t+ 1. Then, by definition of R0, there is also a

path from k to l for all k 2 C [ {i} and l 2 R

0. Moreover, again

by assumption and definition of R0, there exists a path from k

to l for all k 2 R

0 and all l 2 C (otherwise a subset of R0 was

closed at t).

Combined, this implies that the same holds for all k, l 2 C [
R

0 [ {i}. Hence, C [R

0 [ {i} is minimal closed, i.e., C(t+ 1) =

C(t)\{C} [ {C [R

0 [ {i}}.
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(b) If agent i manipulates agent j, then mji(t + 1) > 0 and thus,

since C 3 j is minimal closed at period t, there exists a path

at t + 1 from l to i for all l 2 C. Hence, by assumption there

exists a path from agent j to k, but not vice versa since C

0 3 k

is minimal closed. Thus, R(t+1) = R(t)[C, which finishes the

proof.

Proof of Proposition 2

Suppose w.l.o.g. that C(t) = {N}. First, note that aperiodicity is preserved
since manipulation can only increase the number of simple cycles. We can

write

M(t+ 1) = M(t) + ejz(t)
0
,

where ej is the j-th unit vector, and

zk(t) =

(
(mji(t) + ↵) / (1 + ↵)�mji(t) if k = i

(mjk(t)) / (1 + ↵)�mjk(t) if k 6= i

=

(
↵(1�mji(t))/ (1 + ↵) if k = i

�↵mjk(t)/ (1 + ↵) if k 6= i

.

From Hunter (2005), we get

⇡k(N ; t+ 1)� ⇡k(N ; t) = �⇡k(N ; t)⇡j(N ; t+ 1)
X

l 6=k

zl(t)rlk(t)

=

(
↵/ (1 + ↵) ⇡i(N ; t)⇡j(N ; t+ 1)

P
l 6=i mjl(t)rli(t) if k = i

↵/ (1 + ↵) ⇡k(N ; t)⇡j(N ; t+ 1)
⇣P

l 6=k mjl(t)rlk(t)� rik(t)
⌘

if k 6= i

,

which finishes the proof.

Proof of Corollary 1

We know that ⇡k(C; t), ⇡k(C; t + 1) > 0 for all k 2 C. Note that if i

manipulates j, i.e., ↵ > 0, then it must be that mji(t) < 1 since otherwise

[M(t)](i; j,↵) = [M(t)](i; j, 0) and thus the agent would not have exerted

e↵ort. Thus, by Remark 2,
P

l2C\{i} mjl(t)rli(t) > 0 and hence ⇡i(N ; t +
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1) > ⇡i(N ; t), which proves part (i). Part (ii) is obvious. Part (iii) follows

since mjk(t) = 1 implies
P

l2C\{k} mjl(t)rlk(t) = 0, which finishes the proof.

Proof of Lemma 1

By Proposition 1, we know that C(t) = {N} for all t � 0, and furthermore,

also aperiodicity is preserved. First, we show that the opinions converge

to a consensus x(1). Therefore, suppose to the contrary that the opinions

(with positive probability) do not converge. This implies that there exists

a periodic trust matrix M

⇤ 2 Rn⇥n such that for some sequence of agents

{i⇤(t)}t�0 chosen to manipulate, M(t) ! M

⇤ for t ! 1. Denote the

decision of i⇤(t) at period t by (j⇤(t),↵⇤(t)). Notice that since M(t) is

aperiodic for all t � 0, i.e., M(t) 6= M

⇤ for all t � 0, this is only possible if

there are infinitely many manipulations. (2)

Denoting by x

⇤(t) the opinions and by M

⇤(t) the trust matrix at period

t in the above case, we get

��[x⇤(t)]
�
i

⇤(t); j⇤(t),↵⇤(t)
�
� [x⇤(t)]

�
i

⇤(t); j⇤(t), 0
���

=
��[M⇤(t)]

�
i

⇤(t); j⇤(t),↵⇤(t)
�
x

⇤(t)�M

⇤(t)x⇤(t)
��

! 0 for t ! 1,

and thus, by assumption,

vi⇤
�
[M⇤(t)]

�
i

⇤(t); j⇤(t),↵⇤(t)
�
, x

⇤(t)
�
� vi⇤

�
[M⇤(t)]

�
i

⇤(t); j⇤(t), 0
�
, x

⇤(t)
�

! 0 < c  ci⇤(j
⇤(t),↵⇤(t)) for t ! 1,

which is a contradiction to (2). Having established the convergence of

opinions, it follows directly that k[x(t)](i; j,↵)� [x(t)](i; j, 0)k ! 0 for t !
1, any i selected at t and her choice (j,↵). Hence, by assumption,

vi

�
[M(t)](i; j,↵), x(t)

�
� vi

�
[M(t)](i; j, 0), x(t)

�
! 0 < c  ci(j,↵) for

t ! 1, any i selected at t and her choice (j,↵), which shows that there exits

an almost surely finite stopping time ⌧ such that for all t � ⌧ , E(t) = (i; ·, 0)
for any i chosen to manipulate at t.

Furthermore, since M(⌧) is aperiodic and no more manipulation takes
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place, agents reach a (random) consensus that can be written as

x(1) = ⇡(N ; ⌧)0x(⌧) = ⇡(N ; ⌧)0M(⌧)x(⌧ � 1)

= ⇡(N ; ⌧)0M(⌧ � 1)M(⌧ � 2) · · ·M(1)x(0)

= ⇡(N ; ⌧)0M(⌧ � 1)x(0),

where the second equality follows from the fact that ⇡(N ; ⌧) is a left eigen-

vector of M(⌧) corresponding to eigenvalue 1, which finishes the proof.

Proof of Proposition 3

Suppose that the sequence (⌧k)1k=1 of stopping times denotes the periods

where the trust structure changes, i.e., at t = ⌧k the trust structure changes

the k-th time. Notice that ⌧k = +1 if the k-th change never happens. By

Proposition 1, it follows that when ⌧k < +1, either

(a) 1  |C(⌧k + 1)| < |C(⌧k)| and |R(⌧k + 1)| > |R(⌧k)|, or

(b) |C(⌧k + 1)| = |C(⌧k)| and 0  |R(⌧k + 1)| < |R(⌧k)|

holds. This implies that the maximal number of changes in the trust

structure is finite, i.e., there exists K < +1 such that there are at most

K changes in the structure and thus, almost surely ⌧K+1 = +1. Hence,

⌧ = max{⌧k + 1 | ⌧k < +1} < +1, where ⌧0 ⌘ 0, is the desired almost

surely finite stopping time, which finishes part (i). Part (ii) follows from

Lemma 1. The restriction to C of the matrices M(t) in the computation of

the consensus belief is due to the fact that M(t)|C is a stochastic matrix

for all t � 0 since C is minimal closed at t = b⌧ , which finishes the proof.
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Proof of Lemma 2

Suppose that i 2 S. Since
P

k2S mjk(t) �
P

k/2S mjk(t)  (<)1, it follows

that

X

k2S

mjk(t)�
X

k/2S

mjk(t)

 (<)

 
X

k2S

mjk(t)�
X

k/2S

mjk(t)

!
/(1 + ↵) + ↵/(1 + ↵)

=

0

@
X

k2S\{i}

mjk(t)�
X

k/2S

mjk(t)

1

A
/(1 + ↵) + (mji(t) + ↵)/(1 + ↵)

=
X

k2S

mjk(t+ 1)�
X

k/2S

mjk(t+ 1)

and hence Hom(S; t+ 1) � (>)Hom(S; t), which finishes part (i). Part (ii)

is analogous, which finishes the proof.

Proof of Lemma 3

We can write

⇡k(N ; t+ 1) =
nX

l=1

mlk(t)⇡l(N ; t+ 1)

=
nX

l=1

mlk(t)
�
⇡l(N ; t+ 1)� ⇡l(N ; t)

�
+

nX

l=1

mlk(t)⇡l(N ; t)

=
nX

l=1

mlk(t)
�
⇡l(N ; t+ 1)� ⇡l(N ; t)

�
+

nX

l=1

mlk(t� 1)⇡l(N ; t)

| {z }
=⇡k(N ;t)

,

where the last equality follows since ⇡(N ; t) is a left eigenvector of M(t),

which finishes the proof.

Proof of Proposition 4

Let N⇤ ✓ N denote the set of agents that undersell their information

at period t. Then, the agents in N

⇤ = N\N⇤ oversell their information

and additionally, N⇤, N
⇤ 6= ;. By Proposition 2, we have ⇡k(N ; t + 1) �
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⇡k(N ; t) ! 0 for ↵ ! 0 and all k 2 N and thus by Lemma 3 we have

⇡k(N ; t+ 1)� ⇡k(N ; t) ! 0 for ↵ ! 0 and all k 2 N . (3)

Let k 2 N⇤, then by (ii) and Lemma 3, ⇡k(N ; t+1) � ⇡k(N ; t). Hence, by

(3), there exists ↵(k) > 0 such that

1/n � ⇡k(N ; t+ 1) � ⇡k(N ; t) for all 0 < ↵  ↵(k).

Analogously, for k 2 N

⇤, there exists ↵(k) > 0 such that

1/n  ⇡k(N ; t+ 1) < ⇡k(N ; t) for all 0 < ↵  ↵(k).

Therefore, setting ↵ = mink2N ↵(k), we get for 0 < ↵  ↵

k⇡(N ; t)� (1/n) · Ik22 =
X

k2N

|⇡k(N ; t)� 1/n|2

=
X

k2N⇤

|⇡k(N ; t)� 1/n|2| {z }
�|⇡k(N ;t+1)�1/n|2

+
X

k2N⇤

|⇡k(N ; t)� 1/n|2| {z }
>|⇡k(N ;t+1)�1/n|2

>

X

k2N

|⇡k(N ; t+ 1)� 1/n|2

= k⇡(N ; t+ 1)� (1/n) · Ik22,

which finishes the proof.

Acknowledgements
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